首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A physical map of the Thinopyrum-derived Lr19 translocation.   总被引:1,自引:0,他引:1  
Twenty-nine lines with deletions in the Lr19 ('Indis') translocated chromosome segment were used to physically map three Thinopyrum RFLP loci as well as the Sr25 and Sd1 loci. From the data, the relative locations of marker loci on the translocation were determined as: Sd1, Xpsr165, Xpsr105, Xps129, Lr19, Wsp-D1, Sr25/Y. The data confirmed the reported homoeology between the Lr19 segment and chromosome arm 7DL of wheat. Also, it seems that the Lr19 translocation in 'Indis' is very similar to the Lr19 segment in the T4 source and that the former may not derive from Thinopyrum distichum. Key words : deletion mapping, leaf rust resistance.  相似文献   

2.
Chromosome 7E from Lophopyrum ponticum carries a valuable leaf rust resistant gene designated Lr19. This gene has not been widely used in common wheat breeding because of linkage with the yellow pigment gene Y. This gene tints flour yellow, reducing its appeal in bread making. However, a high level of yellow pigment is desirable in durum wheat breeding. We produced 97 recombinant chromosomes between L. ponticum transfer 7D.7E#1 and its wheat homoeologues, using the ph1b mutation that promotes homoeologous pairing. We characterized a subset of 37 of these lines with 11 molecular markers and evaluated their resistance to leaf rust and the abundance of yellow pigment. The Lr19 gene was mapped between loci Xwg420 and Xmwg2062, whereas Y was mapped distal to Xpsr687, the most distal marker on the long arm of chromosome 7. A short terminal 7EL segment translocated to 7A, including Lr19 and Y (line 1-23), has been transferred to durum wheat by backcrossing. The presence of this alien segment significantly increased the abundance of yellow pigment. The Lr19 also conferred resistance to a new durum leaf rust race from California and Mexico that is virulent on most durum wheat cultivars. The new durum lines with the recombinant 7E segment will be useful parents to increase yellow pigment and leaf rust resistance in durum wheat breeding programs. For the common wheat breeding programs, we selected the recombinant line 1-96, which has an interstitial 7E segment carrying Lr19 but not Y. This recombinant line can be used to improve leaf rust resistance without affecting flour color. The 7EL/7DL 1-96 recombinant chromosome did not show the meiotic self-elimination previously reported for a 7EL/7BL translocation.  相似文献   

3.
Two bread wheat lines each with a translocation on chromosome 7DL from either Thinopyrum intermedium (TC5 and TC14) or Thinopyrum ponticum (T4m), were hybridized in a ph1b mutant background to enhance recombination between the two translocated chromosomal segments. The frequency of recombinants was high in lines derived from the larger and similar-sized translocations (TC5/T4m), but much lower when derived from different-sized translocations (TC14/T4m). Recombinant translocations contained combinations of resistance genes Bdv2, Lr19 and Sr25 conferring resistance to Barley yellow dwarf virus (BYDV), leaf rust and stem rust, respectively. Their genetic composition was identified using bioassays and molecular markers specific for the two progenitor Thinopyrum species. This set of 7DL Th. ponticum/intermedium recombinant translocations was termed the Pontin series. In addition to Thinopyrum markers, the size of the translocation was estimated with the aid of wheat markers mapped on each of the 7DL deletion bins. Bioassays for BYDV, leaf rust and stem rust were performed under greenhouse and field conditions. Once separated from ph1b background, the Pontin recombinant translocations were stable and showed normal inheritance in successive backcrosses. The reported Pontin translocations integrate important resistance genes in a single linkage block which will allow simultaneous selection of disease resistance. Combinations of Bdv2 + Lr19 or Lr19 + Sr25 in both long and short translocations, are available to date. The smaller Pontins, comprising only 20 % of the distal portion of 7DL, will be most attractive to breeders.  相似文献   

4.
Zhong 5 is a partial amphiploid (2n = 56) between Triticum aestivum (2n = 42) and Thinopyrum intermedium (2n = 42) carrying all the chromosomes of wheat and seven pairs of chromosomes from Th. intermedium. Following further backcrossing to wheat, six independent stable 2n = 44 lines were obtained representing 4 disomic chromosome addition lines. One chromosome confers barley yellow dwarf virus (BYDV) resistance, whereas two other chromosomes carry leaf and stem rust resistance; one of the latter also confers stripe rust resistance. Using RFLP and isozyme markers we have shown that the extra chromosome in the Zhong 5-derived BYDV resistant disomic addition lines (Z1, Z2, or Z6) belongs to the homoeologous group 2. It therefore carries a different locus to the BYDV resistant group 7 addition, L1, described previously. The leaf, stem, and stripe rust resistant line (Z4) carries an added group 7 chromosome. The line Z3 has neither BYDV nor rust resistance, is not a group 2 or group 7 addition, and is probably a group 1 addition. The line Z5 is leaf and stem rust resistant, is not stripe rust resistant, and its homoeology remains unknown.  相似文献   

5.
Leaf rust (Puccinia triticina Eriks.), stripe rust (Puccinia striiformis f. tritici Eriks.) and stem rust (Puccinia graminis f. sp. tritici) cause major production losses in durum wheat (Triticum turgidum L. var. durum). The objective of this research was to identify and map leaf, stripe and stem rust resistance loci from the French cultivar Sachem and Canadian cultivar Strongfield. A doubled haploid population from Sachem/Strongfield and parents were phenotyped for seedling reaction to leaf rust races BBG/BN and BBG/BP and adult plant response was determined in three field rust nurseries near El Batan, Obregon and Toluca, Mexico. Stripe rust response was recorded in 2009 and 2011 nurseries near Toluca and near Njoro, Kenya in 2010. Response to stem rust was recorded in field nurseries near Njoro, Kenya, in 2010 and 2011. Sachem was resistant to leaf, stripe and stem rust. A major leaf rust quantitative trait locus (QTL) was identified on chromosome 7B at Xgwm146 in Sachem. In the same region on 7B, a stripe rust QTL was identified in Strongfield. Leaf and stripe rust QTL around DArT marker wPt3451 were identified on chromosome 1B. On chromosome 2B, a significant leaf rust QTL was detected conferred by Strongfield, and at the same QTL, a Yr gene derived from Sachem conferred resistance. Significant stem rust resistance QTL were detected on chromosome 4B. Consistent interactions among loci for resistance to each rust type across nurseries were detected, especially for leaf rust QTL on 7B. Sachem and Strongfield offer useful sources of rust resistance genes for durum rust breeding.  相似文献   

6.
A genetic linkage map, based on a cross between the synthetic hexaploid CPI133872 and the bread wheat cultivar Janz, was established using 111 F1-derived doubled haploid lines. The population was phenotyped in multiple years and/or locations for seven disease resistance traits, namely, Septoria tritici blotch (Mycosphaeralla graminicola), yellow leaf spot also known as tan spot (Pyrenophora tritici-repentis), stripe rust (Puccinia striiformis f. sp. tritici), leaf rust (Puccinia triticina), stem rust (Puccinia graminis f. sp. tritici) and two species of root-lesion nematode (Pratylenchyus thornei and P. neglectus). The DH population was also scored for coleoptile colour and the presence of the seedling leaf rust resistance gene Lr24. Implementation of a multiple-QTL model identified a tightly linked cluster of foliar disease resistance QTL in chromosome 3DL. Major QTL each for resistance to Septoria tritici blotch and yellow leaf spot were contributed by the synthetic hexaploid parent CPI133872 and linked in repulsion with the coincident Lr24/Sr24 locus carried by parent Janz. This is the first report of linked QTL for Septoria tritici blotch and yellow leaf spot contributed by the same parent. Additional QTL for yellow leaf spot were detected in 5AS and 5BL. Consistent QTL for stripe rust resistance were identified in chromosomes 1BL, 4BL and 7DS, with the QTL in 7DS corresponding to the Yr18/Lr34 region. Three major QTL for P. thornei resistance (2BS, 6DS, 6DL) and two for P. neglectus resistance (2BS, 6DS) were detected. The recombinants combining resistance to Septoria tritici blotch, yellow leaf spot, rust diseases and root-lesion nematodes from parents CPI133872 and Janz constitute valuable germplasm for the transfer of multiple disease resistance into new wheat cultivars.  相似文献   

7.
Stripe rust and leaf rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. and P. triticina, respectively, are devastating fungal diseases of common wheat (Triticum aestivum L.). Chinese wheat cultivar Bainong 64 has maintained acceptable adult-plant resistance (APR) to stripe rust, leaf rust and powdery mildew for more than 10?years. The aim of this study was to identify quantitative trait loci/locus (QTL) for resistance to the two rusts in a population of 179 doubled haploid (DH) lines derived from Bainong 64?×?Jingshuang 16. The DH lines were planted in randomized complete blocks with three replicates at four locations. Stripe rust tests were conducted using a mixture of currently prevalent P. striiformis races, and leaf rust tests were performed with P. triticina race THTT. Leaf rust severities were scored two or three times, whereas maximum disease severities (MDS) were recorded for stripe rust. Using bulked segregant analysis (BSA) and simple sequence repeat (SSR) markers, five independent loci for APR to two rusts were detected. The QTL on chromosomes 1BL and 6BS contributed by Bainong 64 conferred resistance to both diseases. The loci identified on chromosomes 7AS and 4DL had minor effects on stripe rust response, whereas another locus, close to the centromere on chromosome 6BS, had a significant effect only on leaf rust response. The loci located on chromosomes 1BL and 4DL also had significant effects on powdery mildew response. These were located at the same positions as the Yr29/Lr46 and Yr46/Lr67 genes, respectively. The multiple disease resistance locus for APR on chromosome 6BS appears to be new. All three genes and their closely linked molecular markers could be used in breeding wheat cultivars with durable resistance to multiple diseases.  相似文献   

8.
P L Dyck  E R Kerber  T Aung 《Génome》1994,37(4):556-559
'Thatcher' backcross lines RL6058 and RL6077 have adult-plant leaf rust resistance and were believed to have Lr34. However, genetic analysis revealed that the genes in the two lines were independent of each other. Previous work demonstrated that Lr34 is located on chromosome 7D. The leaf rust resistance gene in RL6058 must be on chromosome 7DS because no recombinants were observed between it and gene Lr29, known to be on chromosome 7DS. It was also linked with Rc3 (30.25 +/- 2.88%), a gene for purple coleoptile on chromosome 7DS. It was independent of Lr19 and NS1 (nonsuppressor mutant), which are located on 7DL. The leaf rust resistance gene in RL6077 was independent of genes Lr19 and Lr29. The presence of quadrivalents in pollen mother cells of the RL6058/RL6077 hybrid indicates that the Lr34 gene in RL6077 may have been translocated onto another chromosome. Lr34 from RL6058 and RL6077 may have been combined in four F3 lines derived from their intercross.  相似文献   

9.
用染色体工程法培育小麦新品种   总被引:6,自引:0,他引:6  
薛秀庄  许喜堂 《遗传学报》1992,19(4):316-321
染色体工程是培育小麦新品种的有效方法。利用5B染色体效应及定向选择,将黑麦抗条锈基因导入普通小麦,选育出的M8003品系,对条中22—29号等7个生理小种完全免疫,农艺性状良好。核型鉴定,2n=42,含4条随体染色体;Giemsa C-带和N-带分析,以及杂种F_1染色体配对分析,初步判断属于2BS/2RS端部易位和5AL/5RL部分易位。它不同于洛夫林10、13号等1B/1R类型的抗条锈基因,为一新的小麦-黑麦类型条锈抗源,而且是可供生产直接利用的优良品系。  相似文献   

10.
The recent emergence of wheat stem rust Ug99 and evolution of new races within the lineage threatens global wheat production because they overcome widely deployed stem rust resistance (Sr) genes that had been effective for many years. To identify loci conferring adult plant resistance to races of Ug99 in wheat, we employed an association mapping approach for 276 current spring wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT). Breeding lines were genotyped with Diversity Array Technology (DArT) and microsatellite markers. Phenotypic data was collected on these lines for stem rust race Ug99 resistance at the adult plant stage in the stem rust resistance screening nursery in Njoro, Kenya in seasons 2008, 2009 and 2010. Fifteen marker loci were found to be significantly associated with stem rust resistance. Several markers appeared to be linked to known Sr genes, while other significant markers were located in chromosome regions where no Sr genes have been previously reported. Most of these new loci colocalized with QTLs identified recently in different biparental populations. Using the same data and Q?+?K covariate matrices, we investigated the interactions among marker loci using linear regression models to calculate P values for pairwise marker interactions. Resistance marker loci including the Sr2 locus on 3BS and the wPt1859 locus on 7DL had significant interaction effects with other loci in the same chromosome arm and with markers on chromosome 6B. Other resistance marker loci had significant pairwise interactions with markers on different chromosomes. Based on these results, we propose that a complex network of gene-gene interactions is, in part, responsible for resistance to Ug99. Further investigation may provide insight for understanding mechanisms that contribute to this resistance gene network.  相似文献   

11.
D Bai  G J Scoles  D R Knott 《Génome》1995,38(1):8-16
In order to counteract the effects of the mutant genes in races of leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm.) and stem rust (P. graminis f.sp. tritici Eriks. &Henn.) in wheat, exploration of new resistance genes in wheat relatives is necessary. Three accessions of Triticum cylindricum Ces. (4x, CCDD), Acy1, Acy9, and Acy11, were tested with 10 races each of leaf rust and stem rust. They were resistant to all races tested. Viable F1 plants were produced from the crosses of the T. cylindricum accessions as males with susceptible MP and Chinese Spring ph1b hexaploid wheats (T. aestivum, 6x, AABBDD), but not with susceptible Kubanka durum wheat (T. turgidum var. durum, 4x, AABB), even with embryo rescue. In these crosses the D genome of hexaploid wheat may play a critical role in eliminating the barriers for species isolation during hybrid seed development. The T. cylindricum rust resistance was expressed in the F1 hybrids with hexaploid wheat. However, only the cross MP/Acy1 was successfully backcrossed to another susceptible hexaploid wheat, LMPG-6. In the BC2F2 of the cross MP/Acy1//LMPG-6/3/MP, monosomic or disomic addition lines with resistance to either leaf rust race 15 (infection types (IT) 1=, 1, or 1+; addition line 1) or stem rust race 15B-1 (IT 1 or 1+; addition line 2) were selected. Rust tests and examination of chromosome pairing of the F1 hybrids and the progeny of the disomic addition lines confirmed that the genes for rust resistance were located on the added T. cylindricum C-genome chromosomes rather than on the D-genome chromosomes. The T. cylindricum chromosome in addition line 2 was determined to be chromosome 4C through the detection of RFLPs among the genomes using a set of homoeologous group-specific wheat cDNA probes. Addition line 1 was resistant to the 10 races of leaf rust and addition line 2 was resistant to the 10 races of stem rust, as was the T. cylindricum parent. The added C-genome chromosomes occasionally paired with hexaploid wheat chromosomes. Translocation lines with rust resistance (2n = 21 II) may be obtained in the self-pollinated progeny of the addition lines through spontaneous recombination of the C-genome chromosomes and wheat chromosomes. Such translocation lines with resistance against a wide spectrum of rust races should be potentially valuable in breeding wheat for rust resistance.  相似文献   

12.
Leaf (brown) and stripe (yellow) rusts, caused by Puccinia triticina and Puccinia striiformis, respectively, are fungal diseases of wheat (Triticum aestivum) that cause significant yield losses annually in many wheat-growing regions of the world. The objectives of our study were to characterize genetic loci associated with resistance to leaf and stripe rusts using molecular markers in a population derived from a cross between the rust-susceptible cultivar 'Avocet S' and the resistant cultivar 'Pavon76'. Using bulked segregant analysis and partial linkage mapping with AFLPs, SSRs and RFLPs, we identified 6 independent loci that contributed to slow rusting or adult plant resistance (APR) to the 2 rust diseases. Using marker information available from existing linkage maps, we have identified additional markers associated with resistance to these 2 diseases and established several linkage groups in the 'Avocet S' x 'Pavon76' population. The putative loci identified on chromosomes 1BL, 4BL, and 6AL influenced resistance to both stripe and leaf rust. The loci on chromosomes 3BS and 6BL had significant effects only on stripe rust, whereas another locus, characterized by AFLP markers, had minor effects on leaf rust only. Data derived from Interval mapping indicated that the loci identified explained 53% of the total phenotypic variation (R2) for stripe rust and 57% for leaf rust averaged across 3 sets of field data. A single chromosome recombinant line population segregating for chromosome 1B was used to map Lr46/Yr29 as a single Mendelian locus. Characterization of slow-rusting genes for leaf and stripe rust in improved wheat germplasm would enable wheat breeders to combine these additional loci with known slow-rusting loci to generate wheat cultivars with higher levels of slow-rusting resistance.  相似文献   

13.
小麦叶锈病是影响小麦产量的最主要病害之一,CIMMYT品系19HRWSN-76高抗小麦叶锈病,以该品系与感病品系郑州5389杂交得到F2群体,利用叶锈菌生理小种FHJP对F2群体接菌鉴定,结果显示群体的抗感比例符合3∶1的理论比值,推测19HR WSN-76的抗叶锈性由一对显型基因控制,暂命名为Lr HR76。利用分子标记技术和分离群体分组分析法对F2群体进行分子标记检测,位于3DL的SSR标记barc71与该抗病基因连锁,遗传距离为3.0 c M。  相似文献   

14.

Key message

In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies.

Abstract

Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT® and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance.  相似文献   

15.
D Bai  G J Scoles  D R Knott 《Génome》1994,37(3):410-418
Six accessions of Triticum triaristatum (Willd) Godr. &Gren. (syn. Aegilops triaristata) (6x, UUMMUnUn), having good resistance to both leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm) races and stem rust (P. graminis f.sp. tritici Eriks. &Henn.) races, were successfully crossed with both susceptible durum wheats (T. turgidum var. durum L., 2n = 28, AABB) and bread wheats (T. aestivum, 2n = 42, AABBDD). In some crosses, embryo rescue was necessary. The T. triaristatum resistance was expressed in all F1 hybrids. Backcrossing of the F1 hybrids to their wheat parents to produce BC1F1 plants was more difficult (seed set 0-7.14%) than to produce F1 hybrids (seed set 12.50-78.33%). The low female fertility of the F1 hybrids was due to low chromosome pairing. Only gametes with complete or nearly complete genomes from the F1 hybrids were viable. In BC2F4 populations from the cross MP/Ata2//2*MP, monosomic or disomic addition lines (2n = 21 II + 1 I or 22 II) with resistance to leaf rust race 15 (IT 1) were selected. In BC2F2 populations from the crosses CS/Ata4//2*MP and MP/Ata4//2*MP, monosomic or disomic addition lines with resistance to either leaf rust race 15 or stem rust race 15B-1 (both IT 1) were selected. Rust tests and cytology on the progeny of the disomic addition lines confirmed that the genes for rust resistance were located on the added T. triaristatum chromosomes. The homoeologous groups of the T. triaristatum chromosomes in the addition lines from the crosses MP/Ata2//2*MP, CS/Ata4//2*MP, and MP/Ata4//2*MP were determined to be 5, 2, and 7, respectively, through the detecting of RFLPs among genomes using a set of homoeologous group specific wheat cDNA probes. The addition lines with resistance to leaf rust race 15 from the crosses MP/Ata2//2*MP and CS/Ata4//2*MP were resistant to another nine races of leaf rust and the addition line with resistance to stem rust race 15B-1 from the cross MP/Ata4//2*MP was resistant to another nine races of stem rust as were their T. triaristatum parents. Since such genes provide resistance against a wide spectrum of rust races they should be very valuable in wheat breeding for rust resistance.  相似文献   

16.
Use of genetic diversity from related wild and domesticated species has made a significant contribution to improving wheat productivity. Synthetic hexaploid wheats (SHWs) exhibit natural genetic variation for resistance and/or tolerance to biotic and abiotic stresses. Stripe rust caused by (Puccinia striiformis f. sp. tritici; Pst), is an important disease of wheat worldwide. To characterise loci conferring resistance to stripe rust in SHWs, we conducted a genome-wide association study (GWAS) with a panel of 181 SHWs using the wheat 9K SNP iSelect array. The SHWs were evaluated for their response to the prevailing races of Pst at the seedling and adult plant stages, the latter in replicated field trials at two sites in Ethiopia in 2011. About 28% of the SHWs exhibited immunity at the seedling stage while 56% and 83% were resistant to Pst at the adult plant stage at Meraro and Arsi Robe, respectively. A total of 27 SNPs in nine genomic regions (1BS, 2AS, 2BL, 3BL, 3DL, 5A, 5BL, 6DS and 7A) were linked with resistance to Pst at the seedling stage, while 38 SNPs on 18 genomic regions were associated with resistance at the adult plant stage. Six genomic regions were commonly detected at both locations using a mixed linear model corrected for population structure, kinship relatedness and adjusted for false discovery rate (FDR). The loci on chromosome regions 1AS, 3DL, 6DS and 7AL appeared to be novel QTL; our results confirm that resynthesized wheat involving its progenitor species is a rich source of new stripe (yellow) rust resistance that may be useful in choosing SHWs and incorporating diverse yellow rust (YR) resistance loci into locally adapted wheat cultivars.  相似文献   

17.
R L Innes  E R Kerber 《Génome》1994,37(5):813-822
Twelve accessions of Triticum tauschii (Coss.) Schmal. were genetically analyzed for resistance to leaf rust (Puccinia recondita Rob. ex Desm.) and stem rust (Puccinia graminis Pers. f.sp. tritici Eriks. and E. Henn.) of common wheat (Triticum aestivum L.). Four genes conferring seedling resistance to leaf rust, one gene conferring seedling resistance to stem rust, and one gene conferring adult-plant resistance to stem rust were identified. These genes were genetically distinct from genes previously transferred to common wheat from T. tauschii and conferred resistance to a broad spectrum of pathogen races. Two of the four seedling leaf rust resistance genes were not expressed in synthetic hexaploids, produced by combining tetraploid wheat with the resistant T. tauschii accessions, probably owing to the action of one or more intergenomic suppressor loci on the A or B genome. The other two seedling leaf rust resistance genes were expressed at the hexaploid level as effectively as in the source diploids. One gene was mapped to the short arm of chromosome 2D more than 50 cM from the centromere and the other was mapped to chromosome 5D. Suppression of seedling resistance to leaf rust in synthetic hexaploids derived from three accessions of T. tauschii allowed the detection of three different genes conferring adult-plant resistance to a broad spectrum of leaf rust races. The gene for seedling resistance to stem rust was mapped to chromosome ID. The degree of expression of this gene at the hexaploid level was dependent on the genetic background in which it occurred and on environmental conditions. The expression of the adult-plant gene for resistance to stem rust was slightly diminished in hexaploids. The production of synthetic hexaploids was determined to be the most efficient and flexible method for transferring genes from T. tauschii to T. aestivum, but crossing success was determined by the genotypes of both parents. Although more laborious, the direct introgression method of crossing hexaploid wheat with T. tauschii has the advantages of enabling selection for maximum expression of resistance in the background hexaploid genotype and gene transfer into an agronomically superior cultivar.  相似文献   

18.

Key message

Wheat lines carrying Ug99-effective stem rust resistance gene Sr43 on shortened alien chromosome segments were produced using chromosome engineering, and molecular markers linked to Sr43 were identified for marker-assisted selection.

Abstract

Stem rust resistance gene Sr43, transferred into common wheat (Triticum aestivum) from Thinopyrum ponticum, is an effective gene against stem rust Ug99 races. However, this gene has not been used in wheat breeding because it is located on a large Th. ponticum 7el2 chromosome segment, which also harbors genes for undesirable traits. The objective of this study was to eliminate excessive Th. ponticum chromatin surrounding Sr43 to make it usable in wheat breeding. The two original translocation lines KS10-2 and KS24-1 carrying Sr43 were first analyzed using simple sequence repeat (SSR) markers and florescent genomic in situ hybridization. Six SSR markers located on wheat chromosome arm 7DL were identified to be associated with the Th. ponticum chromatin in KS10-2 and KS24-1. The results confirmed that KS24-1 is a 7DS·7el2L Robertsonian translocation as previously reported. However, KS10-2, which was previously designated as a 7el2S·7el2L-7DL translocation, was identified as a 7DS-7el2S·7el2L translocation. To reduce the Th. ponticum chromatin carrying Sr43, a BC2F1 population (Chinese Spring//Chinese Spring ph1bph1b*2/KS10-2) containing ph1b-induced homoeologous recombinants was developed, tested with stem rust, and genotyped with the six SSR markers identified above. Two new wheat lines (RWG33 and RWG34) carrying Sr43 on shortened alien chromosome segments (about 17.5 and 13.7 % of the translocation chromosomes, respectively) were obtained, and two molecular markers linked to Sr43 in these lines were identified. The new wheat lines with Sr43 and the closely linked markers provide new resources for improving resistance to Ug99 and other races of stem rust in wheat.  相似文献   

19.
D Bai  D R Knott 《Génome》1994,37(3):405-409
Six accessions of Triticum turgidum var. dicoccoides L. (4x, AABB) of diverse origin were tested with 10 races of leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm.) and 10 races of stem rust (P. graminis f.sp. tritici Eriks. &Henn.). Their infection type patterns were all different from those of lines carrying the Lr or Sr genes on the A or B genome chromosomes with the same races. The unique reaction patterns are probably controlled by genes for leaf rust or stem rust resistance that have not been previously identified. The six dicoccoides accessions were crossed with leaf rust susceptible RL6089 durum wheat and stem rust susceptible 'Kubanka' durum wheat to determine the inheritance of resistance. They were also crossed in diallel to see whether they carried common genes. Seedlings of F1, F2, and BC1F2 generations from the crosses of the dicoccoides accessions with RL6089 were tested with leaf rust race 15 and those from the crosses with 'Kubanka' were tested with stem rust race 15B-1. The F2 populations from the diallel crosses were tested with both races. The data from the crosses with the susceptible durum wheats showed that resistance to leaf rust race 15 and stem rust race 15B-1 in each of the six dicoccoides accessions is conferred by a single dominant or partially dominant gene. In the diallel crosses, the dominance of resistance appeared to be affected by different genetic backgrounds. With one exception, the accessions carry different resistance genes: CI7181 and PI 197483 carry a common gene for resistance to leaf rust race 15. Thus, wild emmer wheat has considerable genetic diversity for rust resistance and is a promising source of new rust resistance genes for cultivated wheats.  相似文献   

20.
Adult plant resistance (APR) to leaf rust and stripe rust derived from the wheat (Triticum aestivum L.) line PI250413 was previously identified in RL6077 (=Thatcher*6/PI250413). The leaf rust resistance gene in RL6077 is phenotypically similar to Lr34 which is located on chromosome 7D. It was previously hypothesized that the gene in RL6077 could be Lr34 translocated to another chromosome. Hybrids between RL6077 and Thatcher and between RL6077 and 7DS and 7DL ditelocentric stocks were examined for first meiotic metaphase pairing. RL6077 formed chain quadrivalents and trivalents relative to Thatcher and Chinese Spring; however both 7D telocentrics paired only as heteromorphic bivalents and never with the multivalents. Thus, chromosome 7D is not involved in any translocation carried by RL6077. A genome-wide scan of SSR markers detected an introgression from chromosome 4D of PI250413 transferred to RL6077 through five cycles of backcrossing to Thatcher. Haplotype analysis of lines from crosses of Thatcher × RL6077 and RL6058 (Thatcher*6/PI58548) × RL6077 showed highly significant associations between introgressed markers (including SSR marker cfd71) and leaf rust resistance. In a separate RL6077-derived population, APR to stripe rust was also tightly linked with cfd71 on chromosome 4DL. An allele survey of linked SSR markers cfd71 and cfd23 on a set of 247 wheat lines from diverse origins indicated that these markers can be used to select for the donor segment in most wheat backgrounds. Comparison of RL6077 with Thatcher in field trials showed no effect of the APR gene on important agronomic or quality traits. Since no other known Lr genes exist on chromosome 4DL, the APR gene in RL6077 has been assigned the name Lr67.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号