首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30 degrees C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30 degrees C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30 degrees C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30 degrees C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments.  相似文献   

2.
Extraction of rat brain membrane-associated protein kinase C with high specific activity was obtained by applying benzyl alcohol (a membrane fluidizer), EDTA, and high hydrostatic pressures. Approximately 50% of total brain-associated activity was extracted from membranes. The pressure-extracted activity had an eightfold enrichment in the lipid/protein ratio when compared with the cytosolic fraction. This may explain the inability of exogenous diacylglycerol to stimulate endogenous phosphorylation in pressure-extracted activity. The enzyme is extracted at greater than 1,300 atm, a result indicating it most likely has a portion inserted into the hydrophobic portion of the membrane bilayer. Perturbation of the native membrane induces a change in the membrane-associated protein kinase C-lipid interaction that permits extraction under conditions used for the cytosolic species. This is the first report of conversion of the endogenous membrane species to a cytosolic one and may be important in determining the role of protein kinase C in neuronal regulation.  相似文献   

3.
Hepatitis C viral RNA synthesis has been demonstrated to occur on a lipid raft membrane structure. Lipid raft membrane fraction purified by membrane flotation analysis was observed using transmission electron microscopy and atomic force microscopy. Particles around 0.7 um in size were found in lipid raft membrane fraction purified from hepatitis C virus (HCV) replicon but not their parental HuH7 cells. HCV NS5A protein was associated with these specialized particles. After several cycles of freezing-thawing, these particles would fuse into larger sizes up to 10 um. Knockdown of seven proteins associated with lipid raft (VAPA, COPG, RAB18, COMT, CDC42, DPP4, and KDELR2) of HCV replicon cells reduced the observed number of these particles and suppressed the HCV replication. Results in this study indicated that HCV replication complexes with associated lipid raft membrane form distinct particle structures of around 0.7 um as observed from transmission electron microscopy and atomic force microscopy.  相似文献   

4.
Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30°C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30°C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30°C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30°C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments.  相似文献   

5.
A barotolerant member of the genus Pseudomonas was isolated from deep-sea sediment obtained from the Japan Trench, at a depth of 4418 m. The growth temperature was found to affect the hydrostatic pressure range in which the bacterium could grow; the optimum hydrostatic pressure for growth shifted to a higher pressure with increasing temperature. We examined the lipid composition of the inner membrane of cells grown at various hydrostatic pressures and temperatures. The fatty acid components of the inner membrane lipids were C16:0, C16:1, C18:0, and C18:1. The phospholipid components of the inner membrane were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, and phosphatidylserine. It is evident that the effects of elevated hydrostatic pressure are comparable to the effects of low temperature on both the fatty acid composition of the inner membrane lipids and the phospholipid composition of the inner membrane of this bacterium.  相似文献   

6.
The preferential association of cholesterol and sphingolipids within plasma membranes forms organized compartments termed lipid rafts. Addition of caveolin proteins to this lipid milieu induces the formation of specialized invaginated plasma membrane structures called caveolae. Both lipid rafts and caveolae are purported to function in vesicular transport and cell signaling. We and others have shown that disassembly of rafts and caveolae through depletion of plasma membrane cholesterol mitigates mechanotransduction processes in endothelial cells. Because osteoblasts are subjected to fluid-mechanical forces, we hypothesize that cholesterol-rich plasma membrane microdomains also serve the mechanotransduction process in this cell type. Cultured human fetal osteoblasts were subjected to either sustained hydrostatic pressure or laminar shear stress using a pressure column or parallel-plate apparatus, respectively. We found that sustained hydrostatic pressure induced protein tyrosine phosphorylation, activation of extracellular signal-regulated kinase (ERK)1/2, and enhanced expression of c-fos in both time- and magnitude-dependent manners. Similar responses were observed in cells subjected to laminar shear stress. Both sustained hydrostatic pressure- and shear stress-induced signaling were significantly reduced in osteoblasts pre-exposed to either filipin or methyl--cyclodextrin. These mechanotransduction responses were restored on reconstitution of lipid rafts and caveolae, which suggests that cholesterol-rich plasma membrane microdomains participate in the mechanotransduction process in osteoblasts. In addition, mechanical force-induced phosphoproteins were localized within caveolin-containing membranes. These data support the concept that lipid rafts and caveolae serve a general function as cell surface mechanotransduction sites within the plasma membrane. lipid rafts; caveolae; extracellular signal-regulated kinase  相似文献   

7.
A number of peripheral membrane proteins functioning as regulatory enzymes are distributed between soluble and particulate fractions upon homogenization and subcellular fractionation. One such enzyme, the Ca2+/phospholipid-dependent protein kinase, protein kinase C, was analyzed in order to examine this characteristic of differential localization. The soluble and particulate forms of this enzyme were purified to relative homogeneity, and their biochemical and biophysical properties were analyzed and compared. Based on biochemical activities, the particulate form required lower phospholipid concentrations for maximal activation than for the soluble species. The particulate species had a more hydrophobic structure as demonstrated by a hydrophobic fluorescence probe, and had almost 50% more -helical structures according to secondary structure estimation, determined from far ultra-violet-circular dichroism spectra (200–250 nm). Using Fourier transform infrared spectroscopy, specific lipid spectra were detected associated with the soluble protein kinase C species. Further analyses with a fluorescent neutral membrane probe suggested that there was more lipid associated with the purified particulate form, which was of a less mobile nature than those associated with the soluble species. These structural differences provide an explanation for the preferential localization of the enzyme and may prove to be the basis for distribution of other membrane-active peripheral membrane regulatory enzymes.  相似文献   

8.
In order to study the pressure-induced changes of biological membrane, hydrostatic pressures of from 0.1 to 400 MPa were applied to membrane-bound Na(+)/K(+)-ATPase from pig kidney as a model system of protein and lipid membrane. The activity showed at least a three-step change induced by pressures of 0.1-100 MPa, 100-220 MPa, and 220 MPa or higher. At pressures of 100 MPa or lower a decrease in the fluidity of lipid bilayer and a reversible conformational change in transmembrane protein is induced, leading to the functional disorder of membrane-associated ATPase activity. A pressure of 100-220 MPa causes a reversible phase transition in parts of the lipid bilayer from the liquid crystalline to the gel phase and the dissociation of and/or conformational changes in the protein subunits. These changes could cause a separation of the interface between alpha and beta subunits and between protein and the lipid bilayer to create transmembrane tunnels at the interface. Tunnels would be filled with water from the aqueous environment and take up tritiated water. A pressure of 220 MPa or higher irreversibly destroys and fragments the gross membrane structure, due to protein unfolding and interface separation, which is amplified by the increased pressure. These findings provide an explanation for the high pressure-induced membrane-damage to subcellular organelles.  相似文献   

9.
We have used freeze fracture electron microscopy to study the distribution of membrane proteins in the cytoplasmic membrane of Escherichia coli W 3110. While these proteins were distributed randomly at the growth temperature (37 °C), there was extensive protein lipid segregation when the temperature was lowered, resulting in bare patches containing no visible particles (protein), and areas of tightly packed or aggregated particles. To understand the segregation process, we have separated the bare patches from the particle rich membrane areas. Lysis of spheroplasts at 0 °C leads to cytoplasmic membrane fragments with different amounts of membrane particles per unit area; such fragments have been separated on isopycnic sucrose gradients. The bare patches occurred as low density membranes which were completely devoid of particles. They were compared to normal density cytoplasmic membranes with respect to fatty acid composition, protein distribution as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their content of several cytoplasmic membrane marker enzymes.The phospholipid to protein ratio of low density membranes was five times greater than that of normal membranes; unsaturated fatty acids were more abundant in the low density membranes. Most proteins had disappeared from the low density membranes. One protein, which had an apparent molecular weight of 26000 on sodium dodecyl sulfate gels appeared to be concentrated in the low density membranes; it accounted for about 50% of the total protein found in this membrane fraction.Of the cytoplasmic membrane markers tested, NADH oxidase and succinate dehydrogenase were excluded, while d-lactate dehydrogenase remained, and even appeared to be concentrated in the low density membranes.These results indicate that while most membrane proteins are associated with the fluid portion of the bilayer, some proteins evidently associate preferentially with phospholipids in the gel or frozen state.  相似文献   

10.
A protein kinase that is activated by calcium and lipid has been partially purified from the plasma membrane of oat roots. This protein kinase cross-reacts with four monoclonal antibodies directed against a soluble calcium-dependent protein kinase from soybean described previously [Putman-Evans, C. L., Harmon, A. C., & Cormier, M. J. (1990) Biochemistry 29, 2488-2495; Harper, J. F., Sussman, M. R., Schaller, G. E., Putnam-Evans, C., Charbonneau, H., & Harmon, A. C. (1991) Science 252, 951-954], indicating that the oat enzyme is a member of this calcium-dependent protein kinase family. Immunoblots demonstrate that the membrane-derived protein kinase is slightly larger than that observed in the cytosolic fraction of oat. Limited digestion of the membrane-derived kinase with trypsin generates a smaller water-soluble kinase that is still activated by calcium but is no longer activated by lipid. When posthomogenization proteolysis is minimized, the bulk of the immunoreactive kinase material is localized in the membrane. These results suggest that a calcium-dependent protein kinase observed in the supernatant fraction of oat extracts may originate in situ from a calcium- and lipid-dependent protein kinase which is associated with the oat plasma membrane. They further indicate that, in contrast to animal cells, the predominant calcium- and lipid-dependent protein kinase associated with the plasma membrane of plant cells has biochemical properties and amino acid sequence unlike protein kinase C.  相似文献   

11.
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.  相似文献   

12.
A correlation was found between dephosphorylation of chicken erythrocyte membrane proteins, aggregation of intramembrane particles, increase in the lipid bilayer phase of the membrane and exposure of membrane phospholipids toward phospholipase A and trinitrobenzene sulfonic acid. Most of the covalently bound phosphate of the membrane proteins turns over and is associated with 5 major bands. It is suggested that phosphorylation and dephosphorylation of these proteins causes changes in their charge and conformation. Such changes might affect the interaction of these proteins with the neighbouring lipids or lipoprotein complexes and results in the aggregation of intramembrane particles and relative increase in the exposed free lipid bilayer phase of the membrane.  相似文献   

13.
The role of lipid composition in the interaction of purified protein kinase C with large unilamellar vesicles was determined by the extent of photolabelling of the enzyme with 5-[125I]iodonaphthalene-I-azide. The protein kinase C was only slightly labelled when exposed to phosphatidylcholine (PC) liposomes. The addition of phorbol 12-myristate 13-acetate (PMA) or of diacylglycerol to the PC liposomes enhanced significantly the labelling of the protein kinase C at low calcium concentrations. A further enhancement in the photolabelling of the protein kinase C was observed in liposomes containing 2% phosphatidylserine (PS). At low calcium concentrations, the binding of the enzyme to these liposomes increased in the presence of added PMA or diacylglycerol. Raising the levels of PS beyond 2% in the liposomes did not enhance the binding of the protein kinase C. However, when the enzymatic activity of the protein kinase C was measured using basic histones as substrates, maximum phosphorylation was obtained in liposomes with a PC to PS ratio of 1. The fact that the translocation of the protein kinase C from solution to the surface of the liposomes could be monitored by its labelling with 5-iodonaphthalene 1-azide prompted us to determine whether other cytoplasmic proteins might share this property. The interaction of cytoplasmic proteins from HeLa cells with PC liposomes gave trace labelling irrespective of whether calcium was added. When the HeLa cell cytoplasmic proteins were allowed to interact with liposomes containing PS, selective 5-iodonaphthalene-1-azide photolabelling was observed in distinct proteins. Addition of calcium and of PMA or diacylglycerol modified the labelling of some but not all of these proteins. These results suggest that the methodology developed might serve to identify proteins that move to the membrane during stimulation of cells by phorbol esters or by growth factors which induce the generation of diacylglycerol. These results also suggest a role for the phospholipid composition of the plasma membrane (or any intracellular membrane) in the modulation of the activation processes of specific phospholipid-dependent proteins, in particular protein kinase C.  相似文献   

14.
The fusion protein (F) of respiratory syncytial virus (RSV) is the envelope glycoprotein responsible for the characteristic cytopathology of syncytium formation. RSV has been shown to bud from selective areas of the plasma membrane as pleomorphic virions, including both filamentous and round particles. With immunofluorescent microscopy, we demonstrated evidence of RSV filaments incorporating the fusion protein F and colocalizing with a lipid microdomain-specific fluorescent dye, 1,1-dihexadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate. Western blot analysis of Triton X-100 cold-extracted membrane fractions confirmed the presence of RSV proteins within the lipid microdomains. RSV proteins also colocalized with cellular proteins associated with lipid microdomains, caveolin-1, and CD44, as well as with RhoA, a small GTPase. ADP-ribosylation of RhoA by Clostridium botulinum exotoxin inactivated RhoA signaling and resulted in the absence of RSV-induced syncytia despite no significant change in viral titer. We demonstrated an overall decrease in both the number and length of the viral filaments and a shift in the localization of F to nonlipid microdomain regions of the membrane in the presence of C3 toxin. This suggests that the selective incorporation of RSV proteins into lipid microdomains during virus assembly may lead to critical interactions of F with cellular proteins, resulting in microvillus projections necessary for the formation of filamentous virus particles and syncytium formation. Thus, manipulation of membrane lipid microdomains may lead to alterations in the production of viral filaments and RSV pathogenesis and provide a new pharmacologic target for RSV therapy.  相似文献   

15.
We have studied protein acylation in neutrophils of guinea pigs using [3H]myristate. A large number of neutrophil proteins were acylated with exogenously added myristic acid. The myristoylation was detected on 110, 77, 56, 54, 52, 42, and 37 kDa proteins. These myristoylations were stronger in peripheral blood than in peritoneal cells. Myristic acid was found to be covalently linked by an amid bond to these proteins since the proteins were resistant to boiling, chloroform/methanol and hydroxylamine treatment. Most myristoylated proteins appeared to be associated with the membrane fraction, while some of the proteins such as 77 kDa one was distributed also in the cytoplasm and translocated from the cytoplasm to the plasma membrane by stimulation. Lysozyme was myristoylated in vitro by the N-hydroxysuccinimide ester of myristic acid. The myristoylated lysozyme had an ability to be associated with phospholipid liposomes, and the membrane-associated lysozyme became a substrate of the rat brain Ca2+- and phospholipid dependent protein kinase (protein kinase C). These results indicate that myristoylation in neutrophil proteins may have an important role in metabolic regulation through their membrane association.  相似文献   

16.
To contribute to the understanding of membrane protein function upon application of pressure, we investigated the influence of hydrostatic pressure on the conformational order and phase behavior of the multidrug transporter LmrA in biomembrane systems. To this end, the membrane protein was reconstituted into various lipid bilayer systems of different chain length, conformation, phase state and heterogeneity, including raft model mixtures as well as some natural lipid extracts. In the first step, we determined the temperature stability of the protein itself and verified its reconstitution into the lipid bilayer systems using CD spectroscopic and AFM measurements, respectively. Then, to yield information on the temperature and pressure dependent conformation and phase state of the lipid bilayer systems, generalized polarization values by the Laurdan fluorescence technique were determined, which report on the conformation and phase state of the lipid bilayer system. The temperature-dependent measurements were carried out in the temperature range 5-70 °C, and the pressure dependent measurements were performed in the range 1-200 MPa. The data show that the effect of the LmrA reconstitution on the conformation and phase state of the lipid matrix depends on the fluidity and hydrophobic matching conditions of the lipid system. The effect is most pronounced for fluid DMPC and DMPC with low cholesterol levels, but minor for longer-chain fluid phospholipids such as DOPC and model raft mixtures such as DOPC/DPPC/cholesterol. The latter have the additional advantage of using lipid sorting to avoid substantial hydrophobic mismatch. Notably, the most drastic effect was observed for the neutral/glycolipid natural lipid mixture. In this case, the impact of LmrA incorporation on the increase of the conformational order of the lipid membrane was most pronounced. As a consequence, the membrane reaches a mechanical stability which makes it very insensitive to application of pressures as high as 200 MPa. The results are correlated with the functional properties of LmrA in these various lipid environments and upon application of high hydrostatic pressure and are discussed in the context of other work on pressure effects on membrane protein systems.  相似文献   

17.
Recent data indicate that phagocytosis mediated by FcgammaRs is controlled by the Src and Syk families of protein tyrosine kinases. In this study, we demonstrate a sequential involvement of Lyn and Syk in the phagocytosis of IgG-coated particles. The particles isolated at the stage of their binding to FcgammaRs (4 degrees C) were accompanied by high amounts of Lyn, in addition to the signaling gamma-chain of FcgammaRs. Simultaneously, the particle binding induced rapid tyrosine phosphorylation of numerous proteins. During synchronized internalization of the particles induced by shifting the cell to 37 degrees C, Syk kinase and Src homology 2-containing tyrosine phosphatase-1 (SHP-1) were associated with the formed phagosomes. At this step, most of the proteins were dephosphorylated, although some underwent further tyrosine phosphorylation. Quantitative immunoelectron microscopy studies confirmed that Lyn accumulated under the plasma membrane beneath the bound particles. High amounts of the gamma-chain and tyrosine-phosphorylated proteins were also observed under the bound particles. When the particles were internalized, the gamma-chain was still detected in the region of the phagosomes, while amounts of Lyn were markedly reduced. In contrast, the vicinity of the phagosomes was heavily decorated with anti-Syk and anti-SHP-1 Abs. The local level of protein tyrosine phosphorylation was reduced. The data indicate that the accumulation of Lyn during the binding of IgG-coated particles to FcgammaRs correlated with strong tyrosine phosphorylation of numerous proteins, suggesting an initiating role for Lyn in protein phosphorylation at the onset of the phagocytosis. Syk kinase and SHP-1 phosphatase are mainly engaged at the stage of particle internalization.  相似文献   

18.
To contribute to the understanding of membrane protein function upon application of pressure as relevant for understanding, for example, the physiology of deep sea organisms or for baroenzymological biotechnical processes, we investigated the influence of hydrostatic pressure on the activity of Na+,K+-ATPase enriched in the plasma membrane from rabbit kidney outer medulla using a kinetic assay that couples ATP hydrolysis to NADH oxidation. The data show that the activity of Na+,K+-ATPase is reversibly inhibited by pressures below 2 kbar. At higher pressures, the enzyme is irreversibly inactivated. To be able to explore the effect of the lipid matrix on enzyme activity, the enzyme was also reconstituted into various lipid bilayer systems of different chain length, conformation, phase state, and heterogeneity including model raft mixtures. To yield additional information on the conformation and phase state of the lipid bilayer systems, generalized polarization values by the Laurdan fluorescence technique were determined as well. Incorporation of the enzyme leads to a significant increase of the lipid chain order. Generally, similar to the enzyme activity in the natural plasma membrane, high hydrostatic pressures lead to a decline of the activity of the enzyme reconstituted into the various lipid bilayer systems, and in most cases, a multi-phasic behavior is observed. Interestingly, in the low-pressure region, around 100 bar, a significant increase of activity is observed for the enzyme reconstituted into DMPC and DOPC bilayers. Above 100-200 bar, this activity enhancement is followed by a steep decrease of activity up to about 800 bar, where a more or less broad plateau value is reached. The enzyme activity decreases to zero around 2 kbar for all reconstituted systems measured. A different scenario is observed for the effect of pressure on the enzyme activity in the model raft mixture. The coexistence of liquid-ordered and liquid-disordered domains with the possibility of lipid sorting in this lipid mixture leads to a reduced pressure sensitivity in the medium-pressure range. The decrease of ATPase activity may be induced by an increasing hydrophobic mismatch, leading to a decrease of the conformational dynamics of the protein and eventually subunit rearrangement. High pressures, above about 2.2 kbar, irreversibly change protein conformation, probably because of the dissociation and partial unfolding of the subunits.  相似文献   

19.
Interactions of certain naturally occurring, amphiphilic polypeptides with membranes were investigated. Mastoparan (wasp venom toxin), melittin (bee venom toxin), cardiotoxin (cobra venom toxin), and polymyxin B (antibacterial antibiotic) inhibited protein kinase C stimulated by phosphatidylserine bilayer or arachidonate monomer and blocked binding of [3H] phorbol 12,13-dibutyrate to protein kinase C in the presence of phosphatidylserine bilayer, with IC50 values (concentrations causing 50% inhibition) of 1-8 microM. Mastoparan and polymyxin B were much less inhibitory (IC50, 10-20 microM), whereas melittin and cardiotoxin were similarly inhibitory (IC50, 1-4 microM), when protein kinase C was activated instead by synaptosomal membrane. Kinetic analysis indicate that mastoparan inhibited protein kinase C, assayed using phosphatidylserine or synaptosomal membrane as the phospholipid cofactor, competitively with the phospholipid cofactor, in a mixed manner with CaCl2 or diacylglycerol, noncompetitively with histone, and uncompetitively with ATP, with apparent Ki values of 1.6-18.7 microM. Inhibition of Na,K-ATPase in the membrane by these polypeptides had relative potencies different from those for their inhibition of protein kinase C activated by the same membrane preparation; mastoparan and melittin inhibited the two activities with comparable potencies, but polymyxin B and cardiotoxin were far less effective in inhibiting Na,K-ATPase. The same relative inhibitory potencies of the polypeptides (melittin greater than mastoparan greater than polymyxin B) for inhibition of Na,K-ATPase were also noted for their inhibition of Ca2+/calmodulin-dependent protein kinase II, 86Rb uptake (Na+ pump) by HL60 cells and the phorbol ester-induced differentiation of the leukemia cells. These findings were consistent with discrete interactions of the polypeptides with functionally distinct sites on the membrane, leading to differential inhibition of biological activities associated with the membrane. Actions of certain polypeptides appeared to be more specific compared to those of lipid second messengers such as lyso-phosphatidylcholine and sphingosine, and the antineoplastic ether lipid analogs such as 1-O-octadecyl-2-methyl-rac-glycero-3-ophosphocholine.  相似文献   

20.
The C2 domain is a Ca(2+)-dependent membrane-targeting module found in many cellular proteins involved in signal transduction or membrane trafficking. C2 domains are unique among membrane targeting domains in that they show a wide range of lipid selectivity for the major components of cell membranes, including phosphatidylserine and phosphatidylcholine. To understand how C2 domains show diverse lipid selectivity and how this functional diversity affects their subcellular targeting behaviors, we measured the binding of the C2 domains of group IVa cytosolic phospholipase A(2) (cPLA(2)) and protein kinase C-alpha (PKC-alpha) to vesicles that model cell membranes they are targeted to, and we monitored their subcellular targeting in living cells. The surface plasmon resonance analysis indicates that the PKC-alpha C2 domain strongly prefers the cytoplasmic plasma membrane mimic to the nuclear membrane mimic due to high phosphatidylserine content in the former and that Asn(189) plays a key role in this specificity. In contrast, the cPLA(2) C2 domain has specificity for the nuclear membrane mimic over the cytoplasmic plasma membrane mimic due to high phosphatidylcholine content in the former and aromatic and hydrophobic residues in the calcium binding loops of the cPLA(2) C2 domain are important for its lipid specificity. The subcellular localization of enhanced green fluorescent protein-tagged C2 domains and mutants transfected into HEK293 cells showed that the subcellular localization of the C2 domains is consistent with their lipid specificity and could be tailored by altering their in vitro lipid specificity. The relative cell membrane translocation rate of selected C2 domains was also consistent with their relative affinity for model membranes. Together, these results suggest that biophysical principles that govern the in vitro membrane binding of C2 domains can account for most of their subcellular targeting properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号