首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The inward currents in single smooth muscle cells (SMC) isolated from epididymal part of rat vas deferens have been studied using whole-cell patch-clamp method. Depolarising steps from holding potential -90 mV evoked inward current with fast and slow components. The component with slow activation possessed voltage-dependent and pharmacological properties characteristic for Ca(2+) current carried through L-type calcium channels (I(Ca)). The fast component of inward current was activated at around -40 mV, reached its peak at 0 mV, and disappeared upon removal of Na ions from bath solution. This current was blocked in dose-dependent manner by tetrodotoxin (TTX) with an apparent dissociation constant of 6.7 nM. On the basis of voltage-dependent characteristics, TTX sensitivity of fast component of inward current and its disappearance in Na-free solution it is suggested that this current is TTX-sensitive depolarisation activated sodium current (I(Na)). Cell dialysis with a pipette solution containing no macroergic compounds resulted in significant inhibition of I(Ca) (depression of peak I(Ca) by about 81% was observed by 13 min of dialysis), while I(Na) remained unaffected during 50 min of dialysis. These data draw first evidence for the existence of TTX-sensitive Na(+) current in single SMC isolated from rat vas deferens. These Na(+) channels do not appear to be regulated by a phosphorylation process under resting conditions.  相似文献   

2.
Voltage-dependent membrane currents of cells dissociated from tongues of larval tiger salamanders (Ambystoma tigrinum) were studied using whole-cell and single-channel patch-clamp techniques. Nongustatory epithelial cells displayed only passive membrane properties. Cells dissociated from taste buds, presumed to be gustatory receptor cells, generated both inward and outward currents in response to depolarizing voltage steps from a holding potential of -60 or -80 mV. Almost all taste cells displayed a transient inward current that activated at -30 mV, reached a peak between 0 and +10 mV and rapidly inactivated. This inward current was blocked by tetrodotoxin (TTX) or by substitution of choline for Na+ in the bath solution, indicating that it was a Na+ current. Approximately 60% of the taste cells also displayed a sustained inward current which activated slowly at about -30 mV and reached a peak at 0 to +10 mV. The amplitude of the slow inward current was larger when Ca2+ was replaced by Ba2+ and it was blocked by bath applied CO2+, indicating it was a Ca2+ current. Delayed outward K+ currents were observed in all taste cells although in about 10% of the cells, they were small and activated only at voltages more depolarized than +10 mV. Normally, K+ currents activated at -40 mV and usually showed some inactivation during a 25-ms voltage step. The inactivating component of outward current was not observed at holding potentials more depolarized -40 mV. The outward currents were blocked by tetraethylammonium chloride (TEA) and BaCl2 in the bath or by substitution of Cs+ for K+ in the pipette solution. Both transient and noninactivating components of outward current were partially suppressed by CO2+, suggesting the presence of a Ca2(+)-activated K+ current component. Single-channel currents were recorded in cell-attached and outside-out patches of taste cell membranes. Two types of K+ channels were partially characterized, one having a mean unitary conductance of 21 pS, and the other, a conductance of 148 pS. These experiments demonstrate that tiger salamander taste cells have a variety of voltage- and ion-dependent currents including Na+ currents, Ca2+ currents and three types of K+ currents. One or more of these conductances may be modulated either directly by taste stimuli or indirectly by stimulus-regulated second messenger systems to give rise to stimulus-activated receptor potentials. Others may play a role in modulation of neurotransmitter release at synapses with taste nerve fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Isolated Ca currents in cultured dorsal root ganglion (DRG) cells were studied using the patch clamp technique. The currents persisted in the presence of 30 microM tetrodotoxin (TTX) or when external Na was replaced by choline. They were fully blocked by millimolar additions of Cd2+ and Ni2+ to the bath. Two components of an inward-going Ca current were observed. In 5 mM external Ca, a current of small amplitude, turned on already during steps changes to -60 mV membrane potential, leveled off at -30 mV to a value of approximately 0.2 nA. A second, larger current component, which resembled the previously described Ca current in other cells, appeared at more positive voltages (-20 to -10 mV) and had a maximum approximately 0 mV. The current component activated at the more negative membrane potentials showed the stronger dependence on external Ca. The presence of a time- and a voltage-dependent activation was indicated by the current's sigmoidal rise, which became faster with increased depolarization. Its tail currents were generally slower than those associated with the Ca currents of larger amplitude. From -60 mV holding potential, the maximum obtainable amplitude of the low depolarization-activated current was only one-tenth of that achieved from a holding potential of -90 mV. Voltage-dependent inactivation of this current component was fast compared with that of the other component. The properties of this low voltage-activated and fully inactivating Ca current suggest it is the same as the inward current that has been postulated in several central neurons (Llinas, R., and Y. Yarom, 1981, J. Physiol. (Lond.), 315:569-584), which produce depolarizing potential waves and burst-firing only when membrane hyperpolarization precedes.  相似文献   

4.
Membrane properties of isolated mudpuppy taste cells   总被引:13,自引:3,他引:10       下载免费PDF全文
The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste receptor cells generated both outward and inward currents in response to depolarizing voltage steps. Outward K+ currents activated at approximately 0 mV and increased almost linearly with increasing depolarization. The K+ current did not inactivate and was partially Ca++ dependent. One inward current activated at -40 mV, reached a peak at -20 mV, and rapidly inactivated. This transient inward current was blocked by tetrodotoxin (TTX), which indicates that it is an Na+ current. The other inward current activated at 0 mV, peaked at 30 mV, and slowly inactivated. This more sustained inward current had the kinetic and pharmacological properties of a slow Ca++ current. In addition, most taste cells had inwardly rectifying K+ currents. Sour taste stimuli (weak acids) decreased outward K+ currents and slightly reduced inward currents; bitter taste stimuli (quinine) reduced inward currents to a greater extent than outward currents. It is concluded that sour and bitter taste stimuli produce depolarizing receptor potentials, at least in part, by reducing the voltage-dependent K+ conductance.  相似文献   

5.
Isolated ventricular myocytes of 3 to 5 weeks old rats were studied under conditions of intracellular perfusion and voltage clamp. The existence of two inward sodium currents with different TTX-sensitivities and different properties was shown. The fast sodium current was more sensitive to TTX (Kd about 8 X 10(-8) mol/l). The block of the slow sodium current by TTX was less specific (Kd about 7 X 10(-6) mol/l). There was an about four fold difference in the inactivation time constants between these currents. The maximum on the I-V curve of the slow sodium current was shifted along the voltage axis by about 15 mV in the positive direction as compared with that of the fast sodium current. A slow current carried by calcium ions was observed in sodium-free solution. The kinetics and TTX-sensitivity of this current were similar to those of the slow sodium current. The amplitude of this current was 15 to 20 times lower as compared with the slow sodium current observed in Na-containing solution with 10(-6) mol/l TTX (a concentration which completely blocked the fast sodium current). It is suggested that the slow voltage-gated TTX-sensitive channels described are not highly selective and pass both sodium and calcium ions.  相似文献   

6.
The electrical properties of olfactory receptor neurons, enzymatically dissociated from the channel catfish (Ictalurus punctatus), were studied using the whole-cell patch-clamp technique. Six voltage-dependent ionic currents were isolated. Transient inward currents (0.1-1.7 nA) were observed in response to depolarizing voltage steps from a holding potential of -80 mV in all neurons examined. They activated between -70 and -50 mV and were blocked by addition of 1 microM tetrodotoxin (TTX) to the bath or by replacing Na+ in the bath with N-methyl-D-glucamine and were classified as Na+ currents. Sustained inward currents, observed in most neurons examined when Na+ inward currents were blocked with TTX and outward currents were blocked by replacing K+ in the pipette solution with Cs+ and by addition of 10 mM Ba2+ to the bath, activated between -40 and -30 mV, reached a peak at 0 mV, and were blocked by 5 microM nimodipine. These currents were classified as L-type Ca2+ currents. Large, slowly activating outward currents that were blocked by simultaneous replacement of K+ in the pipette with Cs+ and addition of Ba2+ to the bath were observed in all olfactory neurons examined. The outward K+ currents activated over approximately the same range as the Na+ currents (-60 to -50 mV), but the Na+ currents were larger at the normal resting potential of the neurons (-45 +/- 11 mV, mean +/- SD, n = 52). Four different types of K+ currents could be differentiated: a Ca(2+)-activated K+ current, a transient K+ current, a delayed rectifier K+ current, and an inward rectifier K+ current. Spontaneous action potentials of varying amplitude were sometimes observed in the cell-attached recording configuration. Action potentials were not observed in whole-cell recordings with normal internal solution (K+ = 100 mM) in the pipette, but frequently appeared when K+ was reduced to 85 mM. These observations suggest that the membrane potential and action potential amplitude of catfish olfactory neurons are significantly affected by the activity of single channels due to the high input resistance (6.6 +/- 5.2 G omega, n = 20) and low membrane capacitance (2.1 +/- 1.1 pF, n = 46) of the cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Calcium channel currents in isolated smooth muscle cells from human bronchus   总被引:10,自引:0,他引:10  
An electrophysiological study was carried out on smooth muscle cells that were enzymatically dissociated from bundles of muscle fibers dissected out of human bronchi obtained at thoracotomy. These cells that retain the contractile properties of intact bundles were voltage-clamped by means of the whole-cell patch-clamp technique. Upon voltage steps from a holding potential of -60 mV to more positive levels, the initial inward current was followed by large outward currents that inactivated slowly. These were subsequently reduced by substituting Cs+ for K+ in the internal solution and by using Ba2+ instead of Ca2+ as a charge carrier in the external solution. Under these conditions, the inward current did not completely inactivate in the course of 300-ms voltage steps. Inward current measured after leak subtraction was activated at a membrane potential of -25.8 +/- 5 mV, was maximum at +18 +/- 4 mV, and had an apparent reversal potential of +52.5 +/- 5.5 mV (n = 5). The potential at which steady-state inactivation was half-maximum was -28 mV (n = 5). This inward current was identified as a calcium current on the following basis: 1) it was not altered by 10 microM tetrodotoxin (TTX) or by lowering to 10 mM external Na+ concentration; 2) it was blocked by 2.5 mM Co2+ or 1 microM PN 200-110; 3) it was enhanced by 1 microM BAY K 8644, which in addition suppressed the PN 200-110 blockade.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Cardiomyocytes enzymatically isolated from rat and guinea pig ventricular tissue were investigated under conditions of intracellular perfusion and voltage clamp at 18-20 degrees C. Perfusion with 135 mmol/l Tris(HF), pH 7.2 was used to eliminate outward potassium currents. The dependence of inward current (elicited by depolarizing pulses from a holding potential level of--120 mV) on low external TTX concentrations (from 10(-13) to 10(-10) mol/l) was studied. Similar TTX concentrations increased the amplitude of the inward current and changed its kinetics in a large number of cells tested. The effect was fully reversible. The effect could be evaluated in a net form by digital subtraction of the current obtained after the application of a low external TTX concentration from the initial current in a TTX-free solution. The TTX concentration dependence of the difference current could be fitted by one-to-one binding curve with Kd = (1.0 +/= 0.4) x 10(-12) mol/l. TTX-induced current changes were absent in low sodium or chloride-free external solutions. The outward current (a block of which by TTX produced the inward current changes observed) showed a reversal potential consistent with the chloride nature of such a current. The existence of a transient TTX-sensitive Na-dependent potential gated chloride current in the membrane of isolated cardiomyocytes is postulated.  相似文献   

9.
Membrane slow inward currents of 3-day-old embryonic chick single heart cells were investigated using the whole-cell patch clamp technique. In a solution containing only Na+ ions and in the presence of tetrodotoxin and Mn2+, the inward current-voltage relationship presented two maxima, confirming the existence of two different voltage-dependent slow inward currents. The first type, a fast transient slow inward current (Isi (ft], was activated from a holding potential of -80 mV and showed fast activation and inactivation. This current was highly sensitive to melittin (10(-8) M) and insensitive to low concentrations of desmethoxyverapamil [-)D888, 10(-9)-10(-6) M). Depolarizing voltage steps from a holding a potential of -50 mV activated two components of the slow inward current, i.e., a slow and a sustained current (Isi(sts] that showed a slow inactivation followed by a slow inactivation and a sustained component. Melittin at a high concentration (10(-4)M) completely blocked the slow transient component (Isi(st] and left unblocked the sustained component (Isi(s]. Both components (Isi(st) and Isi(s] were blocked by verapamil (10(-5)M) and low concentrations of (-)D888 (10(-8)-10(-6)M).  相似文献   

10.
Two inward currents were observed in crayfish muscle membrane during depolarization steps by the method described by Adrian et al. (1970). Under voltage clamp conditions, hyperpolarization steps elicited a large current (leak current If), associated with an inward voltage dependent current. This inward current was inhibited by niflumic acid (NA), a drug known to block Cl---HCO-3 exchange (Cousin et Motais 1982; Br?lè et al. 1983b). Dynamic outward currents triggered by depolarizing steps were inhibited to a great extent by TEA, the not inhibited portion disappearing when procaine (2 mmol/l) was added to external solution. In the presence of TEA, procaine and NA, it was thus possible to dissect the regenerative calcium current (ICa) into two components: a "fast component" (ICa1) and a "slow component" (ICa2). The reversal potential of ICa was 65 mV (for [Ca]0 = 2.8 mmol/l), and [Ca]i could be calculated to be 1.6 X 10(-5) mol/l. This value of [Ca]i is the same as calculated from values reported by Hencek and Zachar (1977). ICa1 was triggered at a threshold membrane potential of -45 mV and ICa2 at -30 mV. Moreover, the inactivation kinetics for ICa1 was faster than that for ICa2. Our results are in perfect agreement with those obtained by Zahradník and Zachar (1982) who postulated two populations of calcium channels.  相似文献   

11.
We investigated the effects of pressure overload hypertrophy on inward sodium (I Na) and calcium currents (I Ca) in single left ventricular myocytes to determine whether changes in these current systems could account for the observed prolongation of the action potential. Hypertrophy was induced by pressure overload caused by banding of the abdominal aorta. Whole-cell patch clamp experiments were used to measure tetrodotoxin (TTX)-sensitive inward currents. The main findings were that I Ca density was unchanged whereas I Na density after stepping from -80 to -30 mV was decreased by 30% (-9.0 +/- 1.16 pA pF(-1) in control and -6.31 +/- 0.67 pA pF(-1) in hypertrophy, p < 0.05, n = 6). Steady-state activation/inactivation variables of I Na, determined by using double-pulse protocols, were similar in control and hypertrophied myocytes, whereas the time course of fast inactivation of I Na was slowed (p < 0.05) in hypertrophied myocytes. In addition, action potential clamp experiments were carried out in the absence and presence of TTX under conditions where only Ca2+ was likely to enter the cell via TTX-sensitive channels. We show for the first time that a TTX-sensitive inward current was present during the plateau phase of the action potential in hypertrophied but not control myocytes. The observed decrease in I Na density is likely to abbreviate rather than prolong the action potential. Delayed fast inactivation of Na+ channels was not sustained throughout the voltage pulse and may therefore merely counteract the effect of decreased I Na density so that net Na+ influx remains unaltered. Changes in the fast I Na do not therefore appear to contribute to lengthening of the action potential in this model of hypertrophy. However, the presence of a TTX-sensitive current during the plateau could potentially contribute to the prolongation of the action potential in hypertrophied cardiac muscle.  相似文献   

12.
Two-microelectrode voltage clamp studies were performed on the somata of Hermissenda Type B photoreceptors that had been isolated by axotomy from all synaptic interaction as well as any impulse-generating (i.e., active) membrane. In the presence of 2-10 mM 4-aminopyridine (4-AP) and 100 mM tetraethylammonium ion (TEA), which eliminated two previously described voltage-dependent potassium currents (IA and the delayed rectifier), a voltage-dependent outward current was apparent in the steady state responses to command voltage steps more positive than -40 mV (absolute). This current increased with increasing external Ca++. The magnitude of the outward current decreased and an inward current became apparent following EGTA injection. Substitution of external Ba++ for Ca++ also made the inward current more apparent. This inward current, which was almost eliminated after being exposed for approximately 5 min to a solution in which external Ca++ was replaced with Cd++, was maximally activated at approximately 0 mV. Elevation of external potassium allowed the calcium (ICa++) and calcium-dependent K+ (IC) currents to be substantially separated. Command pulses to 0 mV elicited maximal ICa++ but no IC because no K+ currents flowed at their new reversal potential (0 mV) in 300 mM K+. At a holding potential of -60 mV, which was now more negative than the potassium equilibrium potential, EK+, in 300 mM K+, IC appeared as an inward tail current after positive command steps. The voltage dependence of ICa++ was demonstrated with positive steps in 100 mM Ba++, 4-AP, and TEA. Other data indicated that in 10 mM Ca++, IC underwent pronounced and prolonged inactivation whereas ICa++ did not. When the photoreceptor was stimulated with a light step (with the membrane potential held at -60 mV), there was also a prolonged inactivation of IC. In elevated external Ca++, ICa++ also showed similar inactivation. These data suggest that IC may undergo prolonged inactivation due to a direct effect of elevated intracellular Ca++, as was previously shown for a voltage-dependent potassium current, IA. These results are discussed in relation to the production of training-induced changes of membrane currents on retention days of associative learning.  相似文献   

13.
The fast transient inward current elicited by depolarizations above about -60 mV in calf Purkinje fibres was found to be depressed by Cd in concentrations less than 1 mM. The Cd-sensitive current, which strongly depended on external Na, was recorded in the presence of 2 mM MnCl2 and was blocked by TTX, indicating that a contamination from slow Ca-dependent currents could be discounted. The current reduction caused by Cd was also observed in nominally Ca-free solutions. The Cd-induced depression of the fast Na current was not accompanied by changes in the current kinetic parameters, as revealed by comparing inactivation curves and peak current voltage relations at different Cd concentrations, and could be attributed to a voltage-independent channel blocking action. Half-blockade occurred at 0.182 +/- 0.06 mM (n = 4). Plots of peak current amplitude as a function of the Cd concentration showed that the cooperation of two Cd ions was required to block a single channel.  相似文献   

14.
Transmembrane ionic currents have been recorded in single granulosa cells from the laying hen using the whole-cell patch-clamp technique. Under voltage-clamp conditions, depolarizing voltage steps evoked currents composed of a fast inactivating inward component and a delayed outward component. The former was activated at voltages more positive than -50 mV and was fully inactivated within 500 ms. It was blocked by D600 (methoxyverapamil) and by cobalt, suggesting that it is a calcium current. The latter displayed inward rectification and did not inactivate during long duration pulses. It was blocked by tetraethylammonium indicating that it is a potassium current. This is the first evidence of the existence of potassium and calcium transmembrane currents in granulosa cells.  相似文献   

15.
Segments from the nonspiking peripheral dendrites of a crustacean coxal receptor (T fiber) were studied using the voltage clamp technique. The peripheral endings of the T fiber are sensitive to stretch applied to a specialized receptor muscle by rotation of the coxa. The intraganglionary portion of the T fiber is presynaptic to the motor neurons innervating the coxal muscle. Depolarizing commands activated three separate fast channels: (i) a transient inward sodium current, INa, which is blocked by tetrodotoxin (TTX); (ii) a transient outward current, Io1 , having the same voltage-dependent characteristics as INa; and (iii) a second, longer-lasting, outward current, Io2 . Both INa and Io1 were inactivated when segments were clamped at voltages more positive than -50 mV, whereas Io2 could be activated at voltages more positive than -50 mV. Io1 and Io2 were blocked by 4-aminopyridine (4-AP) and by tetraethylammonium (TEA), although Io2 shows a greater sensitivity to TEA than Io1 . It is suggested that Io1 may be a factor in determining the nonspiking behavior of the dendrites and that Io2 may limit the stretch-induced depolarization in the dendrite to a value more negative than that at which the maximum rate of transmitter release occurs. In addition to the three fast currents, the presence of a slow inward and slow outward current could also be demonstrated. The effects of the slow currents were longer in segments cut from the proximal part of the dendrites.  相似文献   

16.
Smooth muscle cells from rat aorta were cultured in defined, serum-free medium and studied using whole-cell patch-clamp techniques. Under conditions designed to isolate currents through Ca channels, step depolarizations produced inward currents which were fast in onset and inactivated rapidly, with little sustained inward current being observed. Both Ni and Cd blocked these currents, with Ni being effective at 50 microM. Removal of external Na or addition of 1 microM tetrodotoxin had no effect. Peak inward currents were attained at about -15 mV, with half-maximal activation at -41 mV using -80 mV holding potentials. The transient inward currents were reduced by depolarized holding potentials, with half-maximal steady-state inactivation at -48 mV. In three of the 98 cells studied, small maintained inward currents were observed with a -40 mV holding potential. The Ca channel antagonist nicardipine (5 microM) blocked the transient inward current while neither of the dihydropyridine Ca channel agonists S(+)202 791 and (-)BAY K 8644 produced a significant augmentation of sustained inward current. At 10 microM, both noradrenaline and adrenaline but not phenylephrine decreased the peak inward current. This inhibition was unaffected by a variety of adrenoceptor antagonists and was also observed when internal solutions having high Ca buffering capacity were used, but was absent when GDP-beta-S instead of GTP was included in the pipette solution. The main conclusions from this study are that under our cell culture conditions, rat aortic smooth muscle cells possess predominantly a transient, low-threshold-activated inward Ca current and that this Ca current is inhibited by certain adrenoceptor agonists but with a quite atypical adrenoceptor antagonist pharmacology.  相似文献   

17.
Slow components of potassium tail currents in rat skeletal muscle   总被引:2,自引:2,他引:0       下载免费PDF全文
The kinetics of potassium tail currents have been studied in the omohyoid muscle of the rat using the three-microelectrode voltage-clamp technique. The currents were elicited by a two-pulse protocol in which a conditioning pulse to open channels was followed by a test step to varying levels. The tail currents reversed at a single well-defined potential (VK). At hyperpolarized test potentials (-100 mV and below), tail currents were inward and exhibited two clearly distinguishable phases of decay, a fast tail with a time constant of 2-3 ms and a slow tail with a time constant of approximately 150 ms. At depolarized potentials (-60 mV and above), tail currents were outward and did not show two such easily separable phases of decay, although a slow kinetic component was present. The slow kinetic phase of outward tail currents appeared to be functionally distinct from the slow inward tail since the channels responsible for the latter did not allow significant outward current. Substitution of Rb for extracellular K abolished current through the anomalous (inward-going) rectifier and at the same time eliminated the slow inward tail, which suggests that the slow inward tail current flows through anomalous rectifier channels. The amplitude of the slow inward tail was increased and VK was shifted in the depolarizing direction by longer conditioning pulses. The shift in VK implies that during outward currents potassium accumulates in a restricted extracellular space, and it is suggested that this excess K causes the slow inward tail by increasing the inward current through the anomalous rectifier. By this hypothesis, the tail current slowly decays as K diffuses from the restricted space. Consistent with such a hypothesis, the decay of the slow inward tail was not strongly affected by changing temperature. It is concluded that a single delayed K channel is present in the omohyoid. Substitution of Rb for K has little effect on the magnitude or time course of outward current tails, but reduces the magnitude and slows the decay of the fast component of inward tails. Both effects are consistent with a mechanism proposed for squid giant axon (Swenson and Armstrong, 1981): that (a) the delayed potassium channel cannot close while Rb is inside it, and (b) that Rb remains in the channel longer than K.  相似文献   

18.
J Connor  L Barr    E Jakobsson 《Biophysical journal》1975,15(10):1047-1067
The electrical behavior of small single frog atrial trabeculae in the double sucrose gap has been investigated. The currents injected during voltage clamp experiments did not behave as predicted from the assumption of spatial uniformity of the voltage across a Hodgkin-Huxley membrane. Much of the difference is due to the geometrical complexities of this tissue. Nonetheless, two transient inward currents have been identified, the faster of which is blocked by tetrodotoxin (TTX). The magnitude of the slower transient varies markedly between preparations but always increases in a given preparation with increase of external calcium. The fast transient current traces, at small to intermediate depolarizations, are often marred by the presence of notches and secondary peaks due most probably to the loss of space clamp conditions. In many preparations these could be removed by reducing the current magnitude through application of a partially-blocking dose of TTX. Conversely, in the preparations whose fast transient was fully blocked by TTX, notches and secondary peaks in the slow transient could by induced through increasing calcium concentration and thereby the slow current magnitude. Previously used techniques for the measurement of the reversal potential of the fast inward transient have been shown to be invalid. In so far as they can be measured, the reversal potentials of the fast and slow inward transient are in the same neighborhood, i.e. around 120 mV from rest. The true values may be quite a bit apart. The total charge flow in the capacitive transient was measured for different sized nodes and preparations. From these data and estimates of plasma membrane area per unit trabecular volume, specific membrane capacitances of around 3 muF/cm2 were calculated for small bundles. The apparent ion current densities on this basis are approximately 1/10 of those measured in axons. The capacitive current occurring in small bundles decayed as the sum of at least three exponential functions of time. On the basis of these data and the anomalously large stable node widths, we suggest a coaxial core model of the preparation with the inner elements in series with an additional large extracellular resistance.  相似文献   

19.
Using the tight-seal voltage-clamp method, the ionic currents in the enzymatically dispersed single smooth muscle cells of the guinea pig taenia coli have been studied. In a physiological medium containing 3 mM Ca2+, the cells are gently tapering spindles, averaging 201 (length) x 8 microns (largest diameter in center of cell), with a volume of 5 pl. The average cell capacitance is 50 pF, and the specific membrane capacitance 1.15 microF/cm2. The input impedance of the resting cell is 1-2 G omega. Spatially uniform voltage-control prevails after the first 400 microseconds. There is much overlap of the inward and outward currents, but the inward current can be isolated by applying Cs+ internally to block all potassium currents. The inward current is carried by Ca2+. Activation begins at approximately -30 mV, maximum ICa occurs at +10-+20 mV, and the reversal potential is approximately +75 mV. The Ca2+ channel is permeable to Sr2+ and Ba2+, and to Cs+ moving outwards, but not to Na+ moving inwards. Activation and deactivation are very rapid at approximately 33 degrees C, with time-constants of less than 1 ms. Inactivation has a complex time course, resolvable into three exponential components, with average time constants (at 0 mV) of 7, 45, and 400 ms, which are affected differently by voltage. Steady-state inactivation is half-maximal at -30 mV for all components combined, but -36 mV for the fast component and -26 and -23 mV for the other two components. The presence of multiple forms of Ca2+ channel is inferred from the inactivation characteristics, not from activation properties. Recovery of the fast channel occurs with a time-constant of 72 ms (at +10 mV). Ca2+ influx during an action potential can transfer approximately 9 pC of charge, which could elevate intracellular Ca2+ concentration adequately for various physiological functions.  相似文献   

20.
Asymmetric membrane currents and calcium transients were recorded simultaneously from cut segments of frog skeletal muscle fibers voltage clamped in a double Vaseline-gap chamber in the presence of high concentration of EGTA intracellularly. An inward phase of asymmetric currents following the hump component was observed in all fibers during the depolarization pulse to selected voltages (congruent to -45 mV). The average value of the peak inward current was 0.1 A/F (SEM = 0.01, n = 18), and the time at which it occurred was 34 ms (SEM = 1.8, n = 18). A second delayed outward phase of asymmetric current was observed after the inward phase, in those experiments in which hump component and inward phase were large. It peaked at more variable time (between 60 and 130 ms) with amplitude 0.02 A/F (SEM = 0.003, n = 11). The transmembrane voltage during a pulse, measured with a glass microelectrode, reached its steady value in less than 10 ms and showed no oscillations. The potential was steady at the time when the delayed component of asymmetric current occurred. ON and OFF charge transfers were equal for all pulse durations. The inward phase moved 1.4 nC/microF charge (SEM = 0.8, n = 6), or about one third of the final value of charge mobilized by these small pulses, and the second outward phase moved 0.7 nC/microF (SEM = 0.8, n = 6), bringing back about half of the charge moved during the inward phase. When repolarization intersected the peak of the inward phase, the OFF charge transfer was independent of the repolarization voltage in the range -60 to -90 mV. When both pre- and post-pulse voltages were changed between -120 mV and -60 mV, the equality of ON and OFF transfers of charge persisted, although they changed from 113 to 81% of their value at -90 mV. The three delayed phases in asymmetric current were also observed in experiments in which the extracellular solution contained Cd2+, La3+ and no Ca2+. Large increases in intracellular [Cl-] were imposed, and had no major effect on the delayed components of the asymmetric current. The Ca2+ transients measured optically and the calculated Ca2+ release fluxes had three phases whenever a visible outward phase followed the inward phase in the asymmetric current. Several interventions intended to interfere with Ca release, reduced or eliminated the three delayed phases of the asymmetric current.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号