首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetylcholinesterase cDNA was cloned by screening a library from Loligo opalescens optic lobes; cDNA sequence analysis revealed an open reading frame coding for a protein of 610 amino acids that showed 20-41% amino acid identity with the acetylcholinesterases studied so far. The characteristic structure of cholinesterase (the choline binding site, the catalytic triad, and six cysteines that form three intrachain disulfide bonds) was conserved in the protein. The heterologous expression of acetylcholinesterase in COS cells gave a recovery of acetylcholinesterase activity 20-fold higher than in controls. The enzyme, partially purified by affinity chromatography, showed molecular and kinetic features indistinguishable from those of acetylcholinesterase expressed in vivo, which displays a high catalytic efficiency. Both enzymes are true acetylcholinesterase corresponding to phosphatidylinositol-anchored G2a dimers of class I, with a marked substrate specificity for acetylthiocholine. The deduced amino acid sequence may explain some particular kinetic characteristics of Loligo acetylcholinesterase, because the presence of a polar amino acid residue (S313) instead of a nonpolar one [F(288) in Torpedo] in the acyl pocket of the active site could justify the high substrate specificity of the enzyme, the absence of hydrolysis with butyrylthiocholine, and the poor inhibition by the organophosphate diisopropyl fluorophosphate.  相似文献   

2.
J P Sine  J P Toutant  P Weigel  B Colas 《Biochemistry》1992,31(44):10893-10900
The properties of a cholinesterase from mucosal cells of rat intestine have been characterized. The enzyme was identified as butyrylcholinesterase because it was more sensitive to iso-OMPA (IC50 = 1.0 x 10(-6) M) than to BW284C51 (IC50 = 5.5 x 10(-5) M) and was not inhibited by substrate excess. It displayed a higher affinity for acetylthiocholine than for butyrylthiocholine. A major molecular form was observed sedimenting at 5.9 S. Two other minor molecular forms were identified as a hydrophilic tetramer (G4, sedimenting at 10.5 S) and a monomer (G1, sedimenting at 4.3 S). The 5.9 S component was referred to as "G" form (G for globular) and not "G2" as usual dimers for the following reasons: (i) the G form was unaffected by the reducing agents, beta-mercaptoethanol and dithiothreitol, which converted disulfide-linked dimers of acetylcholinesterase into monomers, (ii) the G form was shifted from 5.9 to 3.4 S when the sucrose gradient contained Triton X-100. This value of 3.4 S (in Triton X-100) appeared too low for a typical G2 form. The shift in the S value was partly reversible: the 3.4 S form resedimented at 5.2 S in the absence of detergent. The behavior of the G form in sucrose gradients indicated that it was amphiphilic. This was confirmed in nondenaturing electrophoreses and also by quantitative binding of the G form to octyl-Sepharose. The hydrophobic domain of the G form was not a glycolipid, as shown by its insensitivity to Bacillus thuringiensis phosphatidylinositol-specific phospholipase C and its nonaggregating properties in the absence of nondenaturing detergent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Acetylcholinesterase (EC 3.1.1.7) from fetal bovine serum (FBS) was purified to electrophoretic homogeneity. The procedure involved procainamide affinity chromatography with native FBS, followed by chromatography on Sepharose 6B and DEAE-Sephadex. The acetylcholinesterase was purified approximately 44,000-fold, and 13 mg was obtained corresponding to an overall yield of about 45%. The purified acetylcholinesterase was stable at 4 degrees C for at least 8 weeks but was labile to freezing; however, in 50% glycerol the enzyme was stable at -20 degrees C for at least 12 weeks. FBS acetylcholinesterase exhibited typical substrate inhibition, had a Km of 120 microM, and a turnover number of 5300 s-1 with the substrate acetylthiocholine. The enzyme was highly sensitive to the specific acetylcholinesterase inhibitor 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one. FBS acetylcholinesterase was characterized as a G4 form of acetylcholinesterase and was distinguished from bovine erythrocyte acetylcholinesterase on the basis of lectin gel binding, [3H] Triton X-100 binding, amino acid composition, number of catalytic subunits/molecule, and hydrodynamic properties. FBS acetylcholinesterase had a Stokes radius of 76 A as judged by gel filtration, and from this a molecular weight of 340,000 daltons was calculated. The enzyme had a subunit weight of approximately 83,000 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; paraoxon titration indicated a relative active site mass of 75,000 daltons. The amino acid composition of FBS acetylcholinesterase was similar to the human erythrocyte acetylcholinesterase (Rosenberry, T. L., and Scoggin, D. M. (1984) J. Biol. Chem. 259, 5643-5652). A monoclonal antibody directed against human erythrocyte acetylcholinesterase, AE-2, (Fambrough, D. M., Engel, A. G., and Rosenberry, T. L. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 1078-1082) cross-reacted with FBS acetylcholinesterase.  相似文献   

4.
In the culture supernatant of Cytophaga sp. we detected an enzyme that converted glycosylphosphatidyl-inositol-anchored acetylcholinesterase to the hydrophilic form. This enzyme had a cleavage specificity of a phospholipase C. It hydrolyzed phosphatidylinositol but did not act on phosphatidylcholine. On gel filtration the enzyme migrated with an apparent molecular mass of about 17 kDa. It displayed maximal activity between pH 6-6.5 and did not require cofactors for the expression of catalytic activity. Mercurials and zinc ions inhibited the enzyme and its activity also decreased with increasing ionic strength in the assay. With acetylcholinesterase as substrate optimal activity was obtained in pure micelles of Triton X-100, whereas in mixed micelles containing Triton X-100 and phosphatidylcholine the activity was reduced. The enzyme from Cytophaga sp. showed little activity towards acetylcholinesterase embedded in intact membranes where more than 1000-times higher concentrations of phosphatidylinositol-specific phospholipase C was necessary to solubilize acetylcholinesterase as compared to acetylcholinesterase in detergent micelles.  相似文献   

5.
Through the use of molecular and biochemical experiments and bioinformatic tools, this work demonstrates that the PA4921 gene of the Pseudomonas aeruginosa PAO1 genome is a gene responsible for cholinesterase (ChoE) activity. Similar to the acetylcholinesterase (AchE) of Zea mays, this ChoE belongs to the SGNH hydrolase family. In mature ChoE, i.e., without a signal peptide, (18)Ser, (78)Gly, (127)N, and (268)H are conserved aminoacyl residues. Acetylthiocholine (ATC) and propionylthiocholine (PTC) are substrates of this enzyme, but butyrylcholine is an inhibitor. The enzyme also catalyzes the hydrolysis of the artificial esters p-nitrophenyl propionate (pNPP) and p-nitrophenyl butyrate (pNPB) but with lower catalytic efficiency with respect to ATC or PTC. The second difference is that pNPP and pNPB did not produce inhibition at high substrate concentrations, as occurred with ATC and PTC. These differences plus preliminary biochemical and kinetic studies with alkylammonium compounds led us to propose that this enzyme is an acetylcholinesterase (AchE) or propionylcholinesterase. Studies performed with the purified recombinant enzyme indicated that the substrate saturation curves and the catalytic mechanism are similar to those properties described for mammalian AchEs. Therefore, the results of this work suggest that the P. aeruginosa ChoE is an AchE that may also be found in Pseudomonas fluorescens.  相似文献   

6.
Abstract: The number of catalytic subunits of purified bovine nucleus caudatus acetylcholinesterase (E.C. 3.1.1.7) has been determined by active site labelling with [3H]diisopropyl fluorophosphate ([3H]DFP). The 10.5 S, 16 S, and 20 S forms were estimated to contain two, four, and six active sites, respectively, per molecule. A 4.8 S form, which showed a weak amphiphile-dependent activity behavior, was obtained by selective proteolytic digestion with pronase. The inability of the purified 4.8 S form to aggregate after detergent removal, and the molecular mass in the range of 130-165 kD under nondenaturating conditions, indicate that this form is a dimeric form, lacking those hydrophobic regions responsible for aggregation.  相似文献   

7.
Abstract: The hydrophilic, salt-soluble (SS) form of acetylcholinesterase (AChE) from bovine brain caudate nucleus exists mainly as a tetramer sedimenting at 10.3S (∼40%), and a monomer sedimenting at 3.4S (∼60%). The enzyme is N -glycosylated and contains similar HNK-1 carbohydrates as detergent-soluble (DS) AChE. No O-linked carbohydrates could be detected. Amino acid sequencing showed that the N terminus of SS-AChE is identical to that of DS-AChE. In tetrameric SS-AChE, two pairs of disulfide-linked dimers are associated by hydrophobic forces located in the C terminus. Antibodies were raised against a peptide identical to the last 10 amino acid residues of bovine brain DS-AChE. The peptide included the sequence of residues 574–583 (H-Tyr-Ser-Lys-Gln-Asp-Arg-Cys-Ser-Asp-Leu-OH) of the enzyme. The antibodies cross-reacted with tetrameric, but not with monomeric, SS-AChE, showing that in the latter form, the C terminus is truncated. Limited proteolysis of tetrameric SS-AChE at the C terminus led to the formation of an enzymatically active monomer, which did not react with anti-C-terminal antibody. Although the DS form of AChE contains a structural subunit that serves as membrane anchor, no anchor was detected in SS-AChE. Enzyme antigen immunoassays showed that SS-AChE reacted with all monoclonal antibodies directed against the catalytic subunit of DS-AChE, but not with monoclonal antibodies targeting the membrane-anchored subunits. From our results, we conclude that SS-AChE utilizes the same alternative splicing pattern as DS-AChE, leading to tetrameric SS-AChE devoid of the membrane anchor. The active monomer of SS-AChE is most likely derived from tetrameric forms by limited postsynthetic proteolysis.  相似文献   

8.
The sialated, presumed-globular form of an atypical pseudocholinesterase (pseudo-ChE) previously described from surgeonfish tissues (Leibel: Comparative Biochemistry and Physiology 1988) has been purified to apparent homogeneity using a combination of salt fractionation along with ion-exchange and concanavalin A-Sepharose affinity chromatographic techniques. An overall 1,400-fold purification has been achieved with a 24% final yield of a cholinesterase (ChE) whose final specific activity is 50 mumol/min-mg. The purified enzyme was subjected to detailed biochemical and physical analysis. The purified pseudo-ChE is a sialated, globular, tetrameric enzyme with an apparent sedimentation coefficient of 11.5 S (+/- 0.5 S) and a molecular weight of 250 kilodaltons. The monomers are apparently not secured by disulfide bridges. The enzyme preferentially hydrolyzes acetyl(thio)choline but also hydrolyzes propionyl(thio)choline at reduced but comparable rates along with a wide variety of other noncholine esters. As such, it demonstrates the relative nonspecificity associated with classical pseudo-ChEs. However, the enzyme exhibits limited, but real, substrate inhibition with all choline esters as does true acetylcholinesterase (AChE). The enzyme is insensitive to the AChE inhibitor BW 284C51, sensitive to one (RO2-0683) of two (RO2-1250) pseudo-ChE inhibitors, and particularly sensitive to paraoxon inhibition (10(3)-10(4)-fold more so than AChE). It exhibits the short thermal half-life characteristic of pseudo-ChEs but not the expected ionic activation/inhibition profile. It is clear from this and other studies of atypical extrasynaptic cholinesterase activities occurring in other vertebrates that the orthodox categorization of cholinesterase as either "true" ("specific"; E.C. 3.1.1.7) or "pseudo" ("nonspecific"; E.C. 3.1.1.8) is inadequate to accommodate the increasing instances of ChE activities that exhibit atypical, intermediate properties.  相似文献   

9.
Acetylcholinesterase has been isolated from bovine erythrocyte membranes by affinity chromatography using a m-trimethylammonium ligand. The purified enzyme had hydrophobic properties by the criterion of phase partitioning into Triton X-114. The activity of the hydrophobic enzyme was seen as a slow-moving band in nondenaturing polyacrylamide gels. After treatment with phosphatidylinositol-specific phospholipase C, another form of active enzyme was produced that migrated more rapidly toward the anode in these gels. This form of the enzyme partitioned into the aqueous phase in Triton X-114 phase separation experiments and was therefore hydrophilic. The hydrophobic form bound to concanavalin A in the absence of Triton X-100. As this binding was partially prevented by detergent, but not by alpha-methyl mannoside, D-glucose, or myo-inositol, it is in part hydrophobic. Erythrocyte cell membranes showed acetylcholinesterase activity present as a major form, which was hydrophobic by Triton X-114 phase separation and in nondenaturing gel electrophoresis moved at the same rate as the purified enzyme. In the membrane the enzyme was more thermostable than when purified in detergent. The hydrophobic enzyme isolated, therefore, represents a native form of the acetylcholinesterase present in the bovine erythrocyte cell membrane, but in isolation its stability becomes dependent on amphiphile concentration. Its hydrophobic properties and lectin binding are attributable to the association with the protein of a lipid with the characteristics of a phosphatidylinositol.  相似文献   

10.
1. Coding sequences for the human acetylcholinesterase (HuAChE; EC 3.1.1.7) hydrophilic subunit were subcloned in an expression plasmid vector under the control of cytomegalovirus IE gene enhancer-promoter. The human embryonic kidney cell line 293, transiently transfected with this vector, expressed catalytically active acetylcholinesterase. 2. The recombinant gene product exhibits biochemical traits similar to native "true" acetylcholinesterase as manifested by characteristic substrate inhibition, a Km of 117 microM toward acetylthiocholine, and a high sensitivity to the specific acetylcholinesterase inhibitor BW284C51. 3. The transiently transfected 293 cells (100 mm dish) produce in 24 hr active enzyme capable of hydrolyzing 1500 nmol acetylthiocholine per min. Eighty percent of the enzymatic activity appears in the cell growth medium as soluble acetylcholinesterase; most of the cell associated activity is confined to the cytosolic fraction requiring neither detergent nor high salt for its solubilization. 4. The active secreted recombinant enzyme appears in the monomeric, dimeric, and tetrameric globular hydrophilic molecular forms. 5. In conclusion, the catalytic subunit expressed from the hydrophilic AChE cDNA species has the inherent potential to be secreted in the soluble globular form and to generate polymorphism through self-association.  相似文献   

11.
A cholinesterase was partially purified from bush bean (Phaseolus vulgaris L.) roots by using acridinium-based ligand affinity chromatography. The procedure gave a 78-fold increase in specific activity, although at least three inactive contaminants remained. The enzyme activity was maximal against acetyl esters of choline and was inhibited by neostigmine. Di-isopropyl phosphorofluoridate completely inhibited activity at concentrations greater than 0.1 mM. The catalytic centre activity was 2 X 10(-4) times that of electric eel acetylcholinesterase. Cholinesterase activity appeared as a peak (s = 4.2 +/- 0.1 S) after isokinetic sedimentation. The Stokes radius was 4.00 nm and the apparent molecular weight was 72700 +/- 1900. The smallest active and native form of the enzyme appeared to be a monomer. This contrasts with animal acetylcholinesterases, in which the smallest active and native forms are multimeric.  相似文献   

12.
We measured the distribution of molecular forms of acetylcholinesterase (AChE) in muscles of a song bird, the zebra finch, and found a pattern similar to those reported in other vertebrates. As in other species, the most rapidly sedimenting form of the enzyme decreases to barely detectable levels following denervation. In the muscles of the syrinx, castration causes a large decrease in AChE activity, but has little or no effect on the relative abundance of AChE forms. This suggests that the number of AChE catalytic sites is changing without affecting the distribution of catalytic sites among the molecular forms. This is in marked contrast with the effect of denervation in the syrinx, which causes changes in the distribution of activity, as well as in total activity.  相似文献   

13.
The acetylcholinesterase activity of the fruit fly, Drosophila melanogaster, was characterized biochemically. The activity is associated with a glycoprotein which is divided between a detergent-extractable membrane-bound fraction and a soluble fraction. The acetylcholinesterase activity is concentrated in the head of the insect. Through pharmacological methods, greater than 95% of the cholinesterase is judged to be true acetylcholinesterase, and not pseudocholinesterase. As expected for an acetylcholinesterase, the enzyme has a high affinity for acetylthiocholine and is inhibited by excess concentrations of acetylthiocholine. The soluble enzyme is found predominantly as a 7.8 S form; a smaller amount of an approximately 6 S form is also present, and a greater than or equal to 14 S form may exist. The detergent-solubilized acetylcholinesterase has a sedimentation coefficient of 7.5 S in the presence of detergent. The thermal inactivation rates for the soluble and the membrane bound enzymes are markedly different.  相似文献   

14.
Two distinct classes of acetylcholinesterase exist in near equal amounts in the electric organ of Torpedo californica. A globular 5.6 S form is a dimer which possesses a hydrophobic region. The second form is present as elongated species that sediment at 17 and 13 S and contain structural subunits disulfide-linked to the catalytic subunits. Removal of the structural subunits by mild proteolysis yields a tetramer of catalytic subunits which sediments at 11 S. To compare the primary structures of the catalytic subunits of the 5.6 S and 11 S forms of acetylcholinesterase, amino acid sequences from the active sites and from the amino-terminal regions have been elucidated. Active site serines were labeled with [3H]isopropyl fluorophosphate. After digestion with trypsin, the resultant peptides were resolved by elution from a size-exclusion column followed by reverse-phase high performance liquid chromatography. Each active site tryptic peptide contained 24 residues and identical sequences were found in this peptide for the 5.6 S and 11 S forms of the enzyme. The sequence flanking the active site serine revealed extensive homology with the published sequence of human serum cholinesterase as well as a lesser degree of homology with other known serine proteases and esterases. The sequences of the amino-terminal region also appear to be identical for both enzyme forms although we note variation in the ratio of Glu and Gln at position 5. The amino-terminal sequence exhibits only partial homology with the published sequence of human serum cholinesterase.  相似文献   

15.
Purified human erythrocyte membrane acetylcholinesterase was subjected to limited proteolysis with papain. This treatment generated a hydrophilic form of the enzyme as determined by charge-shift crossed immunoelectrophoresis and by binding to phenyl-Sepharose. The hydrophilic enzyme was stable and its activity was independent of the presence of amphiphiles. Electroimmunochemical analysis showed no antigenic difference between the two enzyme forms. Although the proteolytic treatment only brought about a small change in molecular weight, marked differences in the hydrodynamic properties were encountered. The Stokes radius decreased from 8.2 to 5.9 nm and the sedimentation coefficient increased from 6.3 to 7.0 S. The results are consistent with the view that a short hydrophobic peptide responsible for the amphipatic character of acetylcholinesterase is removed by the treatment with papain.  相似文献   

16.
Abstract: Mouse neuroblastoma cells in cultures release acetylcholinesterase into the growth medium. The released enzyme, as well as the intracellular activity, separate on a density gradient into two molecular forms, sedimenting as 4.5S and 10.5S entities. The relative amounts of these forms are different in the two cases: whereas the slower sedimenting form is the major one in the cellular extract, the 10.5S form predominates in the released activity. The cellular and released proteins were labelled by [3H]diisopropylphosphofluoridate and analysed on polyacrylamide-SDS gels. The results suggest that the intracellular as well as the extracellular molecules are oligomers of similar subunits.  相似文献   

17.
Native molecular forms of acetylcholinesterase (AChE) present in a microsomal fraction enriched in SR of rabbit skeletal muscle were characterized by sedimentation analysis in sucrose gradients and by digestion with phospholipases and proteinases. The hydrophobic properties of AChE forms were studied by phase-partition of Triton X-114 and Triton X-100-solubilized enzyme and by comparing their migration in sucrose gradient containing either Triton X-100 or Brij 96. We found that in the microsomal preparation two hydrophilic 13.5 S and 10.5 S forms and an amphiphilic 4.5 S form exist. The 13.5 S is an asymmetric molecule which by incubation with collagenase and trypsin is converted into a 'lytic' 10.5 S form. The hydrophobic 4.5 S form is the predominant one in extracts prepared with Triton X-100. Proteolytic digestion of the membranes with trypsin brought into solution a significant portion of the total activity. Incubation of the membranes with phospholipase C failed to solubilize the enzyme. The sedimentation coefficient of the amphiphilic 4.5 S form remained unchanged after partial reduction, thus confirming its monomeric structure. Conversion of the monomeric amphiphilic form into a monomeric hydrophilic molecule was performed by incubating the 4.5 S AChE with trypsin. This conversion was not produced by phospholipase treatment.  相似文献   

18.
Antiserum prepared against highly purified usual human serum cholinesterase (the most common phenotype) cross-reacted identically with the atypical serum cholinesterase. The level of circulating atypical enzyme protein, determined immunologically, was about 30% lower when the enzyme came from an atypical rather than a usual phenotype, and the level of enzyme activity measured enzymatically atV max with eithero-nitrophenylbutyrate or benzoylcholine as substrate showed approximately the same degree of reduction. The average specific activity (activity atV max per microgram of enzyme protein) in sera from 28 usual and 20 atypical individuals did not differ significantly. These findings suggest that the atypical enzyme not only has altered catalytic properties (K)mbut also might be synthesized more slowly, or clearedin vivo more rapidly, than the usual enzyme. This work was supported by U.S. Public Health Service Grants NS 15871 and GM 27028 and by a grant from the Hoffmann-La Roche Foundation.  相似文献   

19.
On the homogeneity of 11-S acetylcholinesterase   总被引:1,自引:0,他引:1  
11-S acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) purified by affinity chromatography of trypsin-digested homogenates was shown to be contaminated with three other active forms of enzyme. The initial purification used an affinity column of the inhibitor, N-methylacridinium ion. Chromatography of the "affinity-pure" sample on hydroxyapatite resulted in two peaks of acetylcholinesterase activity. One peak contained only a form sedimenting at 11-S (approx. 85% of the recovered activity). The other peak consisted of a 9.5-S form, in addition to 14-S and 18-S forms. The 9.5-S form (approx. 7% of the activity) co-electrophoresed with 11-S in 6% polyacrylamide gels and co-sedimented with the same form in sucrose density gradients containing 0.1 M NaCl. The purified 11-S enzyme was shown to be homogeneous by sucrose density gradient centrifugation and electrophoresis. These results indicate that 11-S acetylcholinesterase may be unsuitable for some characterization studies due to undetected contamination by the 9.5-S form.  相似文献   

20.
We have isolated a full-length cDNA encoding an acetylcholinesterase secreted by the nematode parasite Nippostrongylus brasiliensis. The predicted protein is truncated in comparison with acetylcholinesterases from other organisms such that the carboxyl terminus aligns closely to the end of the catalytic domain of the vertebrate enzymes. The residues in the catalytic triad are conserved, as are the six cysteines which form the three intramolecular disulfide bonds. Three of the fourteen aromatic residues which line the active site gorge in the Torpedo enzyme are substituted by nonaromatic residues, corresponding to Tyr-70 (Thr), Trp-279 (Asn), and Phe-288 (Met). High level expression was obtained via secretion from Pichia pastoris. The purified enzyme behaved as a monomeric hydrophilic species. Although of invertebrate origin and possessing the above substitutions in the active site gorge residues, the enzyme efficiently hydrolyzed acetylthiocholine and showed minimal activity against butyrylthiocholine. It displayed excess substrate inhibition with acetylthiocholine at concentrations over 2. 5 mM and was highly sensitive to both active site and "peripheral" site inhibitors. Northern blot analysis indicated a progressive increase in mRNA for AChE B in parasites isolated from 6 days postinfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号