首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Light-responsive gene expression is crucial to photosynthesizing organisms. Here, we studied functions of cis-elements (AU-box and SD sequences) and a trans-acting factor (ribonuclease, RNase) in light-responsive expression in cyanobacteria. The results indicated that AU-rich nucleotides with an AU-box, UAAAUAAA, just upstream from an SD confer instability on the mRNA under darkness. An RNase E/G homologue, Slr1129, of the cyanobacterium Synechocystis sp. strain PCC 6803 was purified and confirmed capable of endoribonucleolytic cleavage at the AU- (or AG)-rich sequences in vitro. The cleavage depends on the primary target sequence and secondary structure of the mRNA. Complementation tests using Escherichia coli rne/rng mutants showed that Slr1129 fulfilled the functions of both the RNase E and RNase G. An analysis of systematic mutations in the AU-box and SD sequences showed that the cis-elements also affect significantly mRNA stability in light-responsive genes. These results strongly suggested that dark-induced mRNA instability involves RNase E/G-type cleavage at the AU-box and SD sequences in cyanobacteria. The mechanical impact and a possible common mechanism with RNases for light-responsive gene expression are discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
4.
The zinc/iron permease (ZIP/SLC39A) family plays an important role in metal ion transport and is essential for diverse physiological processes. Members of the ZIP family function primarily in the influx of transition metal ions zinc and iron, into cytoplasm from extracellular space or intracellular organelles. The molecular determinants defining metal ion selectivity among ZIP family members remain unclear. Specifically, we reported before that the Drosophila ZIP family member ZIP13 (dZIP13), functions as an iron exporter and was responsible for pumping iron into the secretory pathway. ZIP13 protein is unique in that it differs from the other LIV-1 subfamily members at transmembrane domain IV (TM4), wherein relative positions of the conserved H and D residues in the HNXXD sequence motif are switched, generating a DNXXH motif. In this study, we undertook an in vivo approach to explore the significance of this D/H exchange. Comparative functional analysis of mutants revealed that the relative positions of D and H are critical for the physiological roles of dZIP13 and its close homologue dZIP7. Swapping D/H position of this DNXXH sequence in dZIP13 resulted in loss of iron activity; normal dZIP13 could not complement dZIP7 loss, but swapping the two relative amino acid positions D and H in dZIP13 was sufficient to make it functionally analogous to its close homologue dZIP7. This work provides the first in vivo functional analysis of a structural motif required to differentiate different transporting functions of ZIPs.  相似文献   

5.
6.
In both prokaryotes and eukaryotes, nonsense mutations in a gene can enhance the decay rate or reduce the abundance of the mRNA transcribed from that gene, and we call this process nonsense-mediated mRNA decay. We have been investigating the cis-acting sequences involved in this decay pathway. Previous experiments have demonstrated that, in addition to a nonsense codon, specific sequences 3' of a nonsense mutation, which have been defined as downstream elements, are required for mRNA destabilization. The results presented here identify a sequence motif (TGYYGATGYYYYY, where Y stands for either T or C) that can predict regions in genes that, when positioned 3' of a nonsense codon, promote rapid decay of its mRNA. Sequences harboring two copies of the motif from five regions in the PGK1, ADE3, and HIS4 genes were able to function as downstream elements. In addition, four copies of this motif can function as an independent downstream element. The sequences flanking the motif played a more significant role in modulating its activity when fewer copies of the sequence motif were present. Our results indicate the sequences 5' of the motif can modulate its activity by maintaining a certain distance between the sequence motif and the termination codon. We also suggest that the sequences 3' of the motif modulate the activity of the downstream element by forming RNA secondary structures. Consistent with this view, a stem-loop structure positioned 3' of the sequence motif can enhance the activity of the downstream element. This sequence motif is one of the few elements that have been identified that can predict regions in genes that can be involved in mRNA turnover. The role of these sequences in mRNA decay is discussed.  相似文献   

7.
8.
Previous studies showed that short term exposure of cells to high glucose destabilized protein kinase C (PKC) betaII mRNA, whereas PKCbetaI mRNA levels remained unaltered. Because PKCbeta mRNAs share common sequences other than the PKCbetaII exon encoding a different carboxyl terminus, we examined PKCbetaII mRNA for a cis-acting region that could confer glucose-induced destabilization. A beta-globin/growth hormone reporter con struct containing the PKCbetaII exon was transfected into human aorta and rat vascular smooth muscle cells (A10) to follow glucose-induced destabilization. Glucose (25 mm) exposure destabilized PKCbetaII chimeric mRNA but not control mRNA. Deletion analysis and electrophoretic mobility shift assays followed by UV cross-linking experiments demonstrated that a region introduced by inclusion of the betaII exon was required to confer destabilization. Although a cis-acting element mapped to 38 nucleotides within the betaII exon was necessary to bestow destabilization, it was not sufficient by itself to confer complete mRNA destabilization. Yet, in intact cells antisense oligonucleotides complementary to this region blocked glucose-induced destabilization. These results suggest that this region must function in context with other sequence elements created by exon inclusion involved in affecting mRNA stability. In summary, inclusion of an exon that encodes PKCbetaII mRNA introduces a cis-acting region that confers destabilization to the mRNA in response to glucose.  相似文献   

9.
10.
11.
12.
Labile mRNAs that encode cytokine and immediate-early gene products often contain AU-rich sequences within their 3' untranslated region (UTR). These AU-rich sequences appear to be key determinants of the short half-lives of these mRNAs, although the sequence features of these elements and the mechanism by which they target mRNAs for rapid decay have not been fully defined. We have examined the features of AU-rich elements (AREs) that are crucial for their function as determinants of mRNA instability in mammalian cells by testing the ability of various mutant c-fos AREs and synthetic AREs to direct rapid mRNA deadenylation and decay when inserted within the 3' UTR of the normally stable beta-globin mRNA. Evidence is presented that the pentamer AUUUA, which previously was suggested to be the minimal determinant of instability present in mammalian AREs, cannot direct rapid mRNA deadenylation and decay. Instead, the nonomer UUAUUUAUU is the elemental AU-rich sequence motif that destabilizes mRNA. Removal of one uridine residue from either end of the nonamer (UUAUUUAU or UAUUUAUU) results in a decrease of potency of the element, while removal of a uridine residue from both ends of the nonamer (UAUUUAU) eliminates detectable destabilizing activity. The inclusion of an additional uridine residue at both ends of the nonamer (UUUAUUUAUUU) does not further increase the efficacy of the element. Taken together, these findings suggest that the nonamer UUAUUUAUU is the minimal AU-rich motif that effectively destabilizes mRNA. Additional ARE potency is achieved by combining multiple copies of this nonamer in a single mRNA 3' UTR. Furthermore, analysis of poly(A) shortening rates for ARE-containing mRNAs reveals that the UUAUUUAUU sequence also accelerates mRNA deadenylation and suggests that the UUAUUUAUU motif targets mRNA for rapid deadenylation as an early step in the mRNA decay process.  相似文献   

13.
The infection of cells by vesicular stomatitis virus results in the rapid inhibition of host-cell protein synthesis, but not of viral protein synthesis. To determine if this translational selectivity might be conferred by the viral mRNA, we constructed a plasmid (pUCLN beta-4) containing the 5' end of the viral nucleocapsid (N)-gene, including the ribosome binding site, fused in frame with the gene encoding beta-galactosidase, and compared it to a control plasmid (pMC1924) containing the cellular rabbit beta-globin gene 5' end fused with the beta-galactosidase encoding gene. Both plasmids contained identical promoter and 3' nontranslated regions and expressed similar levels of beta-galactosidase in the indicator cell line 293. In cells transfected with either plasmid, viral infection resulted in a approximately 70% decrease in protein synthesis by five hours. The level of beta-galactosidase from cells transfected with pMC1924 also decreased concomitantly with the decrease in total protein synthesis. However, the level of beta-galactosidase from cells transfected with pUCLN beta-4 was not affected by viral infection. Our data suggest that sequences in the 5' end of the viral mRNA allow for the selective translation of the viral message in the presence of an inhibited translational machinery.  相似文献   

14.
Borna disease virus (BDV) is a highly neurotropic RNA virus that causes neurological disorders in many vertebrate species. Although BDV readily establishes lasting persistence, persistently infected cells maintain an apparently normal cell phenotype in terms of morphology, viability, and proliferation. In this study, to understand the regulation of stress responses in BDV infection, we investigated the expression of heat shock proteins (HSPs) in glial cells persistently infected with BDV. Interestingly, we found that BDV persistence did not upregulate HSP70 expression even in cells treated with heat stress. Furthermore, BDV-infected glial cells exhibited rapid rounding and detachment from the culture plate under various stressful conditions. Immunofluorescence analysis demonstrated that heat stress rapidly disrupts the cell cytoskeleton only in persistently infected cells, suggesting a lack of thermotolerance. Intriguingly, we found that although persistently infected glial cells expressed HSP70 mRNA after heat stress, its expression rapidly disappeared during the recovery period. These observations indicated that persistent BDV infection may affect the stability of HSP70 mRNA. Finally, we found that the double-stranded RNA-dependent protein kinase (PKR) is expressed at a constant level in persistently infected cells with or without heat shock. Considering the interrelationship between HSP70 and PKR production, our data suggest that BDV infection disturbs the cellular stress responses to abolish antiviral activities and maintain persistence.  相似文献   

15.
16.
The context-dependent expression of genes is the core for biological activities, and significant attention has been given to identification of various factors contributing to gene expression at genomic scale. However, so far this type of analysis has been focused either on relation between mRNA expression and non-coding sequence features such as upstream regulatory motifs or on correlation between mRNA abundance and non-random features in coding sequences (e.g., codon usage and amino acid usage). In this study multiple regression analyses of the mRNA abundance and all sequence information in Desulfovibrio vulgaris were performed, with the goal to investigate how much coding and non-coding sequence features contribute to the variations in mRNA expression, and in what manner they act together. Using the AlignACE program, 442 over-represented motifs were identified from the upstream 100bp region of 293 genes located in the known regulons. Regression of mRNA expression data against the measures of coding and non-coding sequence features indicated that 54.1% of the variations in mRNA abundance can be explained by the presence of upstream motifs, while coding sequences alone contribute to 29.7% of the variations in mRNA abundance. Interestingly, most of contribution from coding sequences is overlapping with that from upstream motifs; thereby a total of 60.3% of the variations in mRNA abundance can be explained when coding and non-coding information was included. This result demonstrates that upstream regulatory motifs and coding sequence information contribute to the overall mRNA expression in a combinatorial rather than an additive manner.  相似文献   

17.
18.
19.
20.
The effect of upstream uncD sequences on expression of the Escherichia coli uncC gene, encoding the epsilon subunit of F1-ATPase, was studied. uncC expression was reduced severalfold in plasmid constructs bearing, in addition to uncC, a region of uncD located between 85 and 119 bases upstream from the uncC initiation codon. This reduction was independent of in-frame translation of the uncD sequences. An mRNA stem-loop structure in which sequences located within the inhibitory region of uncD base pair with the uncDC intercistronic region is suggested to function in modulating uncC expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号