首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
By employing RT-PCR in conjunction with 3'-RACE, a full-length cDNA encoding a novel zebrafish cytosolic sulfotransferase (SULT) was cloned and sequenced. Sequence analysis revealed that this zebrafish SULT (designated SULT1 ST5) is, at the amino acid sequence level, close to 50% identical to human and dog SULT1B1 (thyroid hormone SULT). A recombinant form of zebrafish SULT1 ST5 was expressed using the pGEX-2TK bacterial expression system and purified from transformed BL21 (DE3) cells. Purified zebrafish SULT1 ST5 migrated as a 34 kDa protein and displayed substrate specificity for thyroid hormones and their metabolites among various endogenous compounds tested. The enzyme also exhibited sulfating activities toward some xenobiotic phenolic compounds. Its pH optima were 6.0 and 9.0 with 3,3',5-triiodo-l-thyronine (l-T3) as substrate and 6.0 with beta-naphthol as substrate. Kinetic constants of the enzyme with thyroid hormones and their metabolites as substrates were determined. Quantitative evaluation of the regulatory effects of divalent metal cations on the l-T3-sulfating activity of SULT1 ST5 revealed that Fe2+, Hg2+, Co2+, Zn2+, Cu2+, Cd2+ and Pb2+ exhibited dramatic inhibitory effects, whereas Mn2+ showed a significant stimulation. Developmental stage-dependent expression experiments revealed a significant level of expression of this novel zebrafish thyroid hormone-sulfating SULT at the beginning of the hatching period during embryogenesis, which gradually increased to a high level of expression throughout the larval stage into maturity.  相似文献   

2.
By searching the expressed sequence tag database, two zebrafish cDNAs encoding putative cytosolic sulfotransferases (SULTs) were identified. Sequence analysis indicated that these two zebrafish SULTs belong to the cytosolic SULT2 gene family. The recombinant form of these two novel zebrafish SULTs, designated SULT2 ST2 and SULT2 ST3, were expressed using the pGEX-2TK glutathione S-transferase (GST) gene fusion system and purified from transformed BL21 (DE3) Escherichia coli cells. Purified GST-fusion protein form of SULT2 ST2 and SULT2 ST3 exhibited strong sulfating activities toward dehydroepiandrosterone (DHEA) and corticosterone, respectively, among various endogenous compounds tested as substrates. Both enzymes displayed pH optima at approximately 6.5. Kinetic constants of the two enzymes, as well as the GST-fusion protein form of the previously identified SULT2 ST1, with DHEA and corticosterone as substrates were determined. Developmental stage-dependent expression experiments revealed distinct patterns of expression of SULT2 ST2 and SULT2 ST3, as well as the previously identified SULT2 ST1, during embryonic development and throughout the larval stage onto maturity.  相似文献   

3.
4.
Environmental xenoestrogens have been implicated in human reproductive disorders and an increased incidence of breast cancer. Sulfation, a Phase II detoxification mechanism involving the cytosolic sulfotransferases (STs), may be an important mechanism in vivo for fending off these compounds. In this study, we report on the molecular cloning, expression, and purification of two human cytosolic STs, SULT2B1a and SULT2b1b. The activities of these two enzymes, as well as the other eight known human cytosolic STs previously prepared, toward representative environmental xenoestrogens were examined. Activity data showed that P-form (SULT1A1) PST displayed the highest activity toward these compounds, while SULT1C ST #2 also showed considerable activity, indicating that these enzymes may play a more important role in detoxification of environmental xenoestrogens. SULT1C ST #1, SULT2B1a ST, SULT2B1b ST and NST showed negligible or undetectable activity toward these compounds. The other four enzymes, M-form (SULT1A3) PST, SULT1B2 ST, SULT2A1 ST and SULT1E ST showed intermediate levels of activity toward some of these compounds. Kinetic studies on the sulfation of xenoestrogens by P-form (SULT1A1) PST were performed. The results are interpreted in the context of the endocrine-disrupting nature of these xenoestrogens.  相似文献   

5.
Environmental xenoestrogens have been implicated in human reproductive disorders and an increased incidence of breast cancer. Sulfation, a Phase II detoxification mechanism involving the cytosolic sulfotransferases (STs), may be an important mechanism in vivo for fending off these compounds. In this study, we report on the molecular cloning, expression, and purification of two human cytosolic STs, SULT2B1a and SULT2b1b. The activities of these two enzymes, as well as the other eight known human cytosolic STs previously prepared, toward representative environmental xenoestrogens were examined. Activity data showed that P-form (SULT1A1) PST displayed the highest activity toward these compounds, while SULT1C ST #2 also showed considerable activity, indicating that these enzymes may play a more important role in detoxification of environmental xenoestrogens. SULT1C ST #1, SULT2B1a ST, SULT2B1b ST and NST showed negligible or undetectable activity toward these compounds. The other four enzymes, M-form (SULT1A3) PST, SULT1B2 ST, SULT2A1 ST and SULT1E ST showed intermediate levels of activity toward some of these compounds. Kinetic studies on the sulfation of xenoestrogens by P-form (SULT1A1) PST were performed. The results are interpreted in the context of the endocrine-disrupting nature of these xenoestrogens.  相似文献   

6.
By searching the expressed sequence tag database, a zebrafish cDNA encoding a putative cytosolic sulfotransferase (SULT) was identified. Sequence analysis indicated that this zebrafish SULT belongs to the SULT1 cytosolic SULT gene family. The recombinant form of this novel zebrafish SULT, expressed using the pGEX-2TK expression system and purified from transformed BL21 (DE3) Escherichia coli cells, displayed sulfating activities specifically for estrone and 17beta-estradiol among various endogenous compounds tested as substrates. The enzyme also exhibited sulfating activities toward some xenobiotic phenolic compounds. This new zebrafish SULT showed dual pH optima, at 6.5 and 10-10.5, with estrone or n-propyl gallate as substrate. Kinetic constants of the sulfation of estrone, 17beta-estradiol, and n-propyl gallate were determined. Developmental stage-dependent expression experiments revealed a significant level of expression of this novel zebrafish estrogen-sulfating SULT at the beginning of the hatching period during embryogenesis, which continued throughout the larval stage onto maturity.  相似文献   

7.
By searching the zebrafish expressed sequence tag (EST) database, we have identified a cDNA clone encoding a putative zebrafish cytosolic sulfotransferase (ST). This cDNA was isolated and subjected to nucleotide sequencing. Analysis of the sequence data revealed that this novel zebrafish ST displays 32-35% amino acid sequence identity to members of all major cytosolic ST gene families. Therefore, this zebrafish ST, while belonging to the cytosolic ST gene superfamily, appears to be independent from all known constituent ST gene families. Recombinant zebrafish ST, expressed using the pET23c prokaryotic expression vector and purified from transformed Escherichia coli cells, migrated as a 34-kDa protein upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified zebrafish ST displayed sulfating activities toward dopamine and thyroid hormones (T(3) and T(4)), with a pH optimum spanning 7-9. The enzyme also exhibited activities toward a number of xenobiotics including some flavonoids, isoflavonoids, and other phenolic compounds. A thermostability experiment revealed the enzyme to be relatively stable over a temperature range between 20 and 48 degrees C. Among 10 divalent metal cations tested, Fe(++), Hg(++), Co(++), Zn(++), Cu(++), and Cd(++) exhibited dramatic inhibitory effects on the activity of the enzyme. These results constitute a first study on the cloning, expression, and characterization of a zebrafish cytosolic ST.  相似文献   

8.
9.
Cytosolic sulfotransferases (STs) are generally thought to be involved in detoxification of xenobiotics, as well as homeostasis of endogenous compounds such as thyroid/steroid hormones and catecholamine hormones/neurotransmitters. We report here the identification and characterization of a zebrafish estrogen-sulfating cytosolic ST. The zebrafish ST was bacterially expressed, purified, and examined for enzymatic activities using a variety of endogenous compounds as substrates. Results showed that the enzyme displayed much higher activities toward two endogenous estrogens, estrone (E(1)) and 17beta-estradiol (E(2)), in comparison with thyroid hormones, 3,3',5-triiodothyronine (T(3)) and thyroxine (T(4)), dopamine, dihydroxyphenylalanine (Dopa), and dehydroepiandrosterone (DHEA). The kinetic parameters, K(m), and V(max), with estrogens and thyroid hormones as substrates were determined. The calculated V(max)/K(m) for E(1), E(2), T(3), and T(4) were, respectively, 31.6, 16.7, 1.5, and 0.8 nmol min(-1) mg(-1) microM(-1), indicating clearly the estrogens being preferred physiological substrates for the enzyme. The inhibitory effects of isoflavone phytoestrogens on the sulfation of E(2) by this zebrafish ST were examined. The IC(50) determined for quercetin, genistein, and daidzein were 0.7, 2.5, and 8 microM, respectively. Kinetic analyses revealed that the mechanism underlying the inhibition by these isoflavones to be of the competitive type.  相似文献   

10.
We have isolated two highly homologous but distinct rat sulfotransferase cDNAs termed ratSULT1C2 and ratSULT1C2A encoding polypeptides of 297 amino acids each. The amino acid sequence of ratSULT1C2 is 84% identical to the human SULT1C2 and 81% identical to a rabbit SULT1C2 sulfotransferase. ratSULT1C2 and ratSULT1C2A are 92% identical but differ in 22 amino acids. The majority of these amino acid substitutions in ratSULT1C2A is not found in the human and rabbit SULT1C2, which identifies ratSULT1C2 as the orthologue of these sulfotransferases, whereas SULT1C2A is a closely related but distinct enzyme. ratSULT1C2 and 2A sulfotransferases do not sulfonate steroids, dopamine, acetaminophen, or alpha-naphthol, but only p-nitrophenol. Prokaryotically expressed ratSULT1C2A is less active than ratSULT1C2. ratSULT1C2/2A mRNAs are abundant in kidney and less abundant in stomach and liver. The enzymes are expressed as 34-kDa polypeptides in rat kidney, liver, and stomach. In addition, a 28-kDa cross-reacting polypeptide is found in kidney only. Immunohistochemistry revealed expression of ratSULT1C2/2A in the epithelial cells of the proximal tubules of the kidney, bile duct epithelia, hepatocytes, and the epithelium of the gastric mucosal glands. Although the cDNA predicted amino acid sequence identifies both sulfotransferases as cytosolic enzymes, in tissue sections, in the kidney cell line NRK 52, and in transiently transfected BHK cells a considerable fraction of the enzyme was found in a granular perinuclear compartment. Costaining with a lysosomal marker in gastric mucosa tissue sections and cultured cells identifies these structures as lysosomes.  相似文献   

11.
Sulfoconjugation plays a vital role in the detoxification of xenobiotics and in the metabolism of endogenous compounds. In this study, we aimed to identify new members of the sulfotransferase (SULT) superfamily in the silkworm Bombyx mori. Based on amino acid sequence and phylogenetic analyses, two new enzymes, swSULT ST1 and swSULT ST2, were identified that appear to belong to a distinct group of SULTs including several other insect SULTs. We expressed, purified, and characterized recombinant SULTs. While swSULT ST1 sulfated xanthurenic acid and pentachlorophenol, swSULT ST2 exclusively utilized xanthurenic acid as a substrate. Based on these results, and those concerning the tissue distribution and substrate specificity toward pentachlorophenol analyses, we hypothesize that swSULT ST1 plays a role in the detoxification of xenobiotics, including insecticides, in the silkworm midgut and in the induction of gametogenesis in silkworm ovary and testis. Collectively, the data obtained herein contribute to a better understanding of SULT enzymatic functions in insects.  相似文献   

12.
The current study was designed to examine the sulfation of bile acids and bile alcohols by the Zebra danio (Danio rerio) SULTs in comparison with human SULTs. A systematic analysis using the fifteen Zebra danio SULTs revealed that SULT3 ST2 and SULT3 ST3 were the major bile acid/alcohol-sulfating SULTs. Among the eleven human SULTs, only SULT2A1 was found to be capable of sulfating bile acids and bile alcohols. To further investigate the sulfation of bile acids and bile alcohols by the two Zebra danio SULT3 STs and the human SULT2A1, pH-dependence and kinetics of the sulfation of bile acids/alcohols were analyzed. pH-dependence experiments showed that the mechanisms underlying substrate recognition for the sulfation of lithocholic acid (a bile acid) and 5α-petromyzonol (a bile alcohol) differed between the human SULT2A1 and the Zebra danio SULT3 ST2 and ST3. Kinetic analysis indicated that both the two Zebra danio SULT3 STs preferred petromyzonol as substrate compared to bile acids. In contrast, the human SULT2A1 was more catalytically efficient toward lithocholic acid than petromyzonol. Collectively, the results imply that the Zebra danio and human SULTs have evolved to serve for the sulfation of, respectively, bile alcohols and bile acids, matching the cholanoid profile in these two vertebrate species.  相似文献   

13.
14.
A search of the chicken expressed sequence tag (EST) database identified 2 cDNA clones that appeared to represent members of the SULT1B and SULT1C enzyme families. These cDNAs were fully sequenced and found to contain full-length inserts. Phylogenetic analysis of the derived amino acid sequences clearly placed them as the first members of the chicken SULT1B and SULT1C families, respectively, to be identified, and we propose they be named SULT1B1 and SULT1C1. (CHICK)SULT1B1 shares approximately 60% amino acid sequence identity with mammalian SULT1B enzymes, whereas the closest neighbor to (CHICK)SULT1C1 was the ortholog (RAT)SULT1C1, with 68% identity. We cloned these cDNAs into the bacterial expression vectors from the pET series. Transformed Escherichia coli cells strongly expressed the recombinant proteins. Purification of the recombinant enzymes from E. coli was accomplished by a three-step procedure involving ammonium sulfate precipitation, anion exchange chromatography, and affinity chromatography. The purified enzymes displayed subunit molecular weights of approximately 35,000Da on SDS-PAGE, as predicted, and were both able to sulfate a wide range of compounds, including xenobiotics and endogenous substrates such as iodothyronines. Detailed kinetic analysis showed SULT1C1 was more prolific in that it was able to sulfate dopamine, tyramine, and apomorphine, which SULT1B1 was not. 2-Bromophenol was the best substrate for both enzymes. We also raised antibodies against these proteins, which were able to detect the SULTs by ELISA, and which were able to strongly inhibit the recombinant enzymes. This is the first detailed characterization of sulfotransferases from the chicken, and it demonstrates that the avian and mammalian SULT1 enzymes are closely related in both structure and function.  相似文献   

15.
The protective effects of diet, especially soya products, tea, and many fruits, against a variety of human cancers, as suggested by epidemiological studies, has focused attention on flavonoids, isoflavonoids, and other phenolic dietary compounds as chemoprotectants. Among the mechanisms suggested for their chemoprotective action, their ability to inhibit the bioactivation of carcinogens by the human cytosolic sulfotransferases (STs) and the direct effects of their sulfoconjugates are being increasingly studied. We report here a systematic study on the sulfation of representative flavonoids, isoflavonoids, anti-oxidants, and other phenolic dietary compounds by all ten known human cytosolic STs. All ten recombinant human cytosolic STs were prepared in a pure form and tested for their sulfating activities with a variety of these compounds. P-form (SULT1A1) phenol ST (PST) showed high sulfating activity with most of these compounds. M-form (SULT1A3) PST showed high activity with the flavonoids but not with the isoflavonoids. SULT1C ST #2 showed high activity with the isoflavonoids and also sulfated most of the other compounds. Possible relevance of these results to the chemoprotective effects of these dietary compounds is discussed.  相似文献   

16.
Environmental estrogen-like chemicals are increasingly recognized as a potential hazardous factor for wildlife as well as humans. We have recently embarked on developing a zebrafish model for investigating the role of sulfonation in the metabolism and adverse functioning of environmental estrogens. Here, we report on a systematic investigation of the sulfonation of representative environmental estrogens (bisphenol A, 4-n-octylphenol, 4-n-nolylphenol, diethylstilbestrol, and 17 alpha-ethynylestradiol) by zebrafish cytosolic sulfotransferases (STs). Of the seven enzymes tested, four zebrafish STs (designated ZF ST #2, ZF ST #3, ZF ST #4, and ZF DHEA ST) exhibited differential sulfonating activities toward the five environmental estrogens tested, with ZF ST #3 being more highly active than the other three. It was further demonstrated that bisphenol A, 4-n-octylphenol, and 4-n-nonylphenol exerted concentration-dependent inhibition of the sulfonation of 17 beta-estradiol, implying a potential role of these environmental estrogens in interfering with the sulfonation, and possibly homeostasis, of endogenous estrogens. Kinetic studies revealed that the mechanism underlying the inhibition by bisphenol A or 4-n-nonylphenol to be of the competitive type.  相似文献   

17.
Sulfation is an important conjugation pathway in deactivating thyroid hormones, keeping the proper hormonal balance, and increasing the rate of thyroid hormone metabolism. We have identified, cloned, and characterized a sulfotransferase (SULT) that is capable of thyroid hormone conjugation in the dog. This enzyme, designated cSULT1B1, displays a strong identity (>84%) to the human ST1B2 enzyme. However, cSULT1B1 displays less identity, about 73%, to mouse and rat orthologs. In addition, the canine enzyme is three amino acids shorter than the rodent ones but has the same length as the human ortholog, 296 amino acids. The bacterial expressed and partial purified cSULT1B1 enzyme sulfates p-nitrophenol and 1-naphtol, but not dopamine. The thyroid hormones 3,3'-diiodothyronine and 3,5,3'-triiodothyronine are efficiently sulfated. 3,3',5'-Triiodothyronine is sulfated to lesser degree while sulfation of 3,5'-diiodothyronine and 3,3',5,5'-tetraiodothyronine cannot be detected. The cSULT1B1 is found in the colon (highest level), kidney and small intestine in dogs, but surprisingly not in the male dog liver although low levels of immunoreactivity were detected in the female dog liver. The male dog expresses more of SULT1B1 enzyme in the lower part of the small intestine while the female dog displays an opposite pattern of expression. These results describe the cloning and characterization of a canine thyroid hormone sulfating enzyme that is more closely related to the human ortholog than to the rodent thyroid sulfating enzymes.  相似文献   

18.
Cytosolic sulfotransferases (STs), traditionally viewed as Phase II drug-metabolizing or detoxifying enzymes, are increasingly being implicated in the metabolism of endogenous biologically-active molecules. Except for studies on changes in their levels of expression and activity in the early stage of development in mammals, very little is known about how these enzymes are regulated. In this study, the regulatory effects of divalent metal cations on the activity of human cytosolic STs were quantitatively evaluated. Results obtained indicate that all nine human cytosolic STs examined are partially or completely inhibited/stimulated by the ten divalent metal cations tested at 10 mM concentration. Compared with the other metal cations, the inhibitory or stimulatory effect of Mg2+ and Ca2+ on the activities of the human cytosolic STs appeared to be relatively smaller. Concentration-dependent effects of the divalent metal cations were further examined. The IC50 or EC50 values determined for different divalent metal cations were mostly above their normal physiological concentration ranges. In a few cases, however, IC50 values close to the physiological concentrations of certain divalent metal cations were observed. Using the monoamine (M)-form phenol ST (PST) as a model, it was demonstrated that the K(m) for dopamine changed only slightly with increasing concentrations of Cd2+, whereas the V(max) was dramatically decreased.  相似文献   

19.
20.
Sulfation is an important pathway in the metabolism of thyroid hormones. Sulfated iodothyronines are elevated in nonthyroidal illnesses and in the normal human fetal circulation. We assayed and characterized COS-1 cell expressed recombinant human liver dehydroepiandrosterone sulfotransferase (DHEA ST or SULT2A1) and estrogen sulfotransferase (EST or SULT1E1) activities for the first time with triiodothyronine (T(3)) as the substrate. Several biochemical properties that included apparent K(m) values, thermal stabilities, and responses to the inhibitors 2, 6-dichloro-4-nitrophenol and NaCl were tested. SULT2A1, a member of the hydroxysteroid sulfotransferase family, used 3,3'-T(2) more readily than T(3) and 3,5-T(2) as substrates, but had the lowest apparent K(m) value for T(3) of any reported human SULT. SULT1E1, a member of the phenol sulfotransferase family, used 3,3'-T(2) and rT(3) more readily than T(3), and also displayed the greatest specificity for T(4) among human SULTs. SULT2A1 may contribute more to iodothyronine sulfation than previously suspected. Potential roles of both steroid sulfotransferases in the enhanced sulfation of nonthyroidal illnesses and fetal development invite further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号