首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoenolpyruvate carboxykinase is a key enzyme in gluconeogenesis. The expression of the PCK1 gene in Saccharomyces cerevisiae is strictly regulated and dependent on the carbon source provided. Two upstream activation sites (UAS1PCK1 and UAS2PCK1) and one upstream repression site (URSPCK1) were localized by detailed deletion analysis. The efficacy of these three promoter elements when separated from each other was confirmed by investigations using heterologous promoter test plasmids. Activation mediated by UAS1PCK1 or UAS2PCK1 did not occur in the presence of glucose, indicating that these elements are essential for glucose derepression. The repressing effect caused by URSPCK1 was much stronger in glucose-grown cells than in ethanol-grown cells.  相似文献   

2.
3.
4.
5.
Summary The majority of the activation potential of the Saccharomyces cerevisiae TDH3 gene promoter is contained within nucleotides –676 to –381 (relative to the translation initiation codon). An upstream activation sequence (UAS) in this region has been characterized by in vitro and in vivo assays and demonstrated to be composed of two small, adjacent DNA sequence elements. The essential determinant of this upstream UAS is a general regulatory factor 1 (GRF1) binding site at nucleotides –513 to –501. A synthetic DNA element comprising this sequence, or an analogue in which two of the degenerate nucleotides of the GRF1 site consensus sequence were altered, activated 5 deleted TDH3 and CYC1 promoters. The second DNA element of the UAS is a 7 by sequence which is conserved in the promoters of several yeast genes encoding glycolytic enzymes and occurs at positions –486 to –480 of the TDH3 promoter. This DNA sequence represents a novel promoter element: it contains no UAS activity itself, yet potentiates the activity of a GRF1 UAS. The potentiation of the GRFl UAS by this element occurs when placed upstream from the TATA box of either the TDH3 or CYC1 promoters. The characteristics of this element (termed GPE for GRF1 site potentiator element) indicate that it represents a binding site for a different yeast protein which increases the promoter activation mediated by the GRF1 protein. Site-specific deletion and promoter reconstruction experiments suggest that the entire activation potential of the –676 to –381 region of the TDH3 gene promoter may be accounted for by a combination of the GRF1 site and the GPE.  相似文献   

6.
Ashbya gossypii carries only a single gene (TEF) coding for the abundant translation elongation factor 1. Cloning and sequencing of this gene and deletion analysis of the promoter region revealed an extremely high degree of similarity with the well studied TEF genes of the yeast Saccharomyces cerevisiae including promoter upstream activation sequence (UAS) elements. The open reading frames in both species are 458 codons long and show 88.6% identity at the DNA level and 93.7% identity at the protein level. A short DNA segment in the promoter, between nucleotides -268 and -213 upstream of the ATG start codon, is essential for high-level expression of the A. gossypii TEF gene. It carries two sequences, GCCCATACAT and ATCCATACAT, with high homology to the UASrpg sequence of S. cerevisiae, which is an essential promoter element in genes coding for highly expressed components of the translational apparatus. UASrpg sequences are binding sites for the S. cerevisiae protein TUF, also called RAP1 or GRF1. In gel retardation with A. gossypii protein extracts we demonstrated specific protein binding to the short TEF promoter segment carrying the UASrpg homologous sequences.  相似文献   

7.
TheSchizosaccharomyces pombe rhp51 + gene encodes a recombinational repair protein that shares significant sequence identities with the bacterial RecA and theSaccharomyces cerevisiae RAD51 protein. Levels ofrhp51 + mRNA increase following several types of DNA damage or inhibition of DNA synthesis. Anrhp51::ura4 fusion gene was used to identify the cis-acting promoter elements involved in regulatingrhp51 + expression in response to DNA damage. Two elements, designated DRE1 and DRE2 (fordamage-responsiveelement), match a decamer consensus URS (upstream repressing sequence) found in the promoters of many other DNA repair and metabolism genes fromS. cerevisiae. However, our results show that DRE1 and DRE2 each function as a UAS (upstream activating sequence) rather than a URS and are also required for DNA-damage inducibility of the gene. A 20-bp fragment located downstream of both DRE1 and DRE2 is responsible for URS function. The DRE1 and DRE2 elements cross-competed for binding to two proteins of 45 and 59 kDa. DNase I footprint analysis suggests that DRE1 and DRE2 bind to the same DNA-binding proteins. These results suggest that the DRE-binding proteins may play an important role in the DNA-damage inducibility ofrhp51 + expression.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Summary The genes xy1A and xy1B were cloned together with their promoter region from the chromosome of Klehsiella pneumoniae var. aerogenes 1033 and the DNA sequence (3225 bp) was determined. The gene xy1A encodes the enzyme xylose isomerase (XI or XylA) consisting of 440 amino acids (calculated Mr of 49 793). The gene xy1B encodes the enzyme xylulokinase (XK or Xy1B) with a calculated M, of 51 783 (483 amino acids). The two genes successfully complemented xy1 mutants of Escherichia coli K12, but no gene dosage effect was detected. E. coli wild-type cells which harbored plasmids with the intact xylA Kp 5 upstream region in high copy number (but lacking an active xy1B gene on the plasmids) were phenotypically xylose-negative and xylose isomerase and xylulokinase activities were drastically diminished. Deletion of 5 upstream regions of xy1A on these plasmids and their substitution by a lac promoter resulted in a xylose-positive phenotype. This also resulted in overproduction of plasmid-encoded xylose isomerase and xylulokinase activities in recombinant E. coli cells.  相似文献   

15.
16.
17.
18.
19.
为了解厚藤(Ipomoea pes-caprae)脱水素基因IpDHN (GenBank登录号:KX426069)启动子的转录活性和对非生物胁迫和植物激素ABA的响应,通过染色体步移法克隆了IpDHN的上游启动子序列IpDHN-Pro,长度为974 bp。构建IpDHN-Pro调控下GUS转基因载体,转化拟南芥(Arabidopsis thaliana)植株获得IpDHN-Pro::GUS转基因植株并进行GUS染色,验证IpDHN-Pro启动转录活性以及在氯化钠、甘露醇、ABA处理后拟南芥GUS基因表达变化。结果表明,扩增获得的IpDHN-Pro序列包含多个顺式作用元件,包括1个ABRE、3个Myb转录因子结合位点、富含TC的重复序列以及Skn-1基序等。转基因拟南芥GUS染色及qRT-PCR表明该序列可驱动GUS基因在拟南芥稳定表达,且表达受高盐、渗透压及ABA的诱导。这表明IpDHN-Pro是一个盐旱、ABA诱导的启动子序列,可应用于相关的植物抗逆遗传工程研究。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号