首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the molecular basis of disease requires gene expression profiling of normal and pathological tissue. Although the advent of laser microdissection (LMD) has greatly facilitated the procurement of specific cell populations, often only small amounts of low quality RNA is recovered. This precludes the use of global approaches of gene expression profiling which require sizable amounts of high quality RNA. Here we report a method for processing of snap-frozen tissue to prepare large amounts of intact RNA using LMD.  相似文献   

2.
3.
4.
5.
6.
7.
DNA microarrays have the ability to analyze the expression of thousands of the same set of genes under at least two different experimental conditions. However, DNA microarrays require substantial amounts of RNA to generate the probes, especially when bacterial RNA is used for hybridization (50 microg of bacterial total RNA contains approximately 2 microg of mRNA). We have developed a computer-based algorithm for prediction of the minimal number of primers to specifically anneal to all genes in a given genome. The algorithm predicts, for example, that 37 oligonucleotides should prime all genes in the Mycobacterium tuberculosis genome. We tested the usefulness of the genome-directed primers (GDPs) in comparison to random primers for gene expression profiling using DNA microarrays. Both types of primers were used to generate fluorescent-labeled probes and to hybridize to an array of 960 mycobacterial genes. Compared to random-primer probes, the GDP probes were more sensitive and more specific, especially when mammalian RNA samples were spiked with mycobacterial RNA. The GDPs were used for gene expression profiling of mycobacterial cultures grown to early log or stationary growth phases. This approach could be useful for accurate genome-wide expression analysis, especially for in vivo gene expression profiling, as well as directed amplification of sequenced genomes.  相似文献   

8.
Puskás LG  Zvara A  Hackler L  Van Hummelen P 《BioTechniques》2002,32(6):1330-4, 1336, 1338, 1340
  相似文献   

9.
We describe a general method for the preparation of λZAP II cDNA libraries from very small amounts (<50 mg) of plant tissue. We have achieved this by combining an efficient method for RNA extraction with a modified PCR protocol for the synthesis and amplification of cDNA. Using this protocol we have found it possible to generate cDNA libraries containing more than 106 clones from as little as 1 μg of total RNA.  相似文献   

10.
11.
Detection of very small amounts of RNA based on microdissection of plant tissue is essential for modern plant biology. Mass spectroscopy technology (MassARRAY) based on Sequenomtrade mark instrumentation was adapted to determine quickly and in a high-throughput fashion (by multiplexing) the absolute amounts of mRNA of closely related soybean genes. A sensitivity of 0.1 amol (10(-19)) was achieved, representing as few as 1,000 mRNA molecules. This methodology eliminates the use of housekeeping genes as reference standards and has multiple applications for plant functional genomics, such as the monitoring of individual expression of paralogous genes at ultra-low expression levels and/or in extremely small tissue samples.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
Laser capture microdissection of cells from plant tissues   总被引:28,自引:0,他引:28       下载免费PDF全文
Laser capture microdissection (LCM) is a technique by which individual cells can be harvested from tissue sections while they are viewed under the microscope, by tacking selected cells to an adhesive film with a laser beam. Harvested cells can provide DNA, RNA, and protein for the profiling of genomic characteristics, gene expression, and protein spectra from individual cell types. We have optimized LCM for a variety of plant tissues and species, permitting the harvesting of cells from paraffin sections that maintain histological detail. We show that RNA can be extracted from LCM-harvested plant cells in amount and quality that are sufficient for the comparison of RNAs among individual cell types. The linear amplification of LCM-captured RNA should permit the expression profiling of plant cell types.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号