首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The brassinosteriod-deficient lkb mutant of garden pea (Pisum sativum L.) is characterized by an erectoides phenotype (reduced internode length, thickened stems, epinastic leaves), which is rescued by application of exogenous brassinolide. We show that the LKB gene is the Arabidopsis DIMINUTO/DWARF-1 (DIM/DWF1) homologue of pea. The DIM/DWF1 homologue from lkb plants contains a mutation that may result in reduced enzyme function, thus resulting in the previously shown accumulation of 24-methylenecholesterol and a deficiency of its hydrogenated product, campesterol. This ultimately leads to a deficiency of the biologically active brassionolide. The mutation in the lkb sequence cosegregates with the lkb phenotype. Northern analyis of the LKB gene revealed that the gene is ubiquitously expressed around the plant and that there is no evidence for negative feedback regulation of the gene.  相似文献   

2.
The interaction between photosynthetic electron transport and the activities of the thylakoid associated carbonic anhydrase (tCA), estimated as combined tCA activity in pea plants (Pisum sativum L. Borek cv., WT) and mutant form (costata 2/125) that differ in chlorophyll content have been compared. Chlorophyll a fluorescence changes after the inhibition of tCA by ethoxyzolamide (EZ), estimating possible role of tCA in PSII downregulation were investigated. Costata expresses higher tCA activity and higher O2 evolution in comparison to WT. Inhibition of tCA by EZ decreased effective PSII photochemistry that coincided with an enhancement in thermal dissipation, while maximal PSII quantum yield (Fv/Fm) did not significantly change. Ethoxyzolamide induced changes in fluorescence parameters that were more strongly expressed in costata 2/125. The results show that tCA is involved in the regulation of the proton gradient across thylakoid membranes and thus limits PSII downregulation.  相似文献   

3.
Plasma concentration of prolactin was significantly reduced in pyridoxine-deficient as compared to control (pyridoxine-supplemented) adult male rats. Administration of pyridoxine to deficient rats resulted in a significant increase in plasma prolactin. The reduction in plasma prolactin in pyridoxine-deficient rats corresponded with the significantly reduced hypothalamic contents of pyridoxal phosphate and serotonin in pyridoxine-deficient rats. Plasma prolactin concentrations were also measured in response to serotonergic agents in both groups of rats. The administration of the 5HT1A agonist (8-hydroxy 2-n-dipropylamino tetralin) resulted in a significant increase in plasma prolactin and that of the specific 5HT1A antagonist spiroxatrine had the opposite effect. The results suggest that the hypothalamic serotonergic regulation of prolactin release is impaired in pyridoxine deficiency.  相似文献   

4.
We investigated chilling-induced changes in ethylene levels in Arabidopsis to find plants with distinct patterns of ethylene production in the cold-related biosynthetic pathway. The sensitive mutants identified here includedchs1-2,chs4-2, andchs6-2. Among these, plants of thechs4-2 mutant produced more ethylene than did the wild type after both were transferred from 4°C or 10°C to 22°C. This mutant also showed less freezing tolerance and more electrolyte leakage than the wild-type plants. Our results suggest a relationship between ethylene biosynthesis and chilling sensitivity in the mutant To determine which of the enzymes involved in ethylene biosynthesis were induced by chilling, we tested the activities of ACC synthase and ACC oxidase in both mutant and wild-type plants, and found greater activity by ACC synthase as well as a higher ACC content in the mutants after all the plants were transferred from 10°C to 22°C. However, ACC oxidase activity did not differ between mutant and wild-type plants in response to chilling treatment Therefore, we conclude thatchs4-2 mutants produce more ethylene than do other mutants or the wild type during their recovery from chilling conditions. Furthermore, we believe that ACC synthase is the key enzyme involved in this response.  相似文献   

5.
The gigas mutant in pea is deficient in the floral stimulus   总被引:3,自引:0,他引:3  
Identification of a gene acting in the floral stimulus pathway should provide a basis for determining the identity of this elusive substance. Our tests indicate the Gi (gigas) gene in pea (Pisum sativum L.) acts in this manner. The gigas mutant was selected by Dl M. Vassiteva following gamma radiation of the late flowering, quantitative long day cultivar Virtus. The gigas trait showed single gene recessive inheritance and the mutant allele was symbolised gi consistent with our preliminary report. Gigas plants were later flowering than the initial line in all conditions tested and they showed an enhanced response to photoperiod and vernalisation. Unvernalised gigas plants did not flower under a 24-h photoperiod comprising 8 h of daylight and 16 h of weak (3μmol m?2 s?1) incandescent light and they took on a phenotype similar to the vegl (vegetative) mutant in pea. However, genetic tests showed the two mutants were not allelic. Three or four weeks vernalisation at 4?C resulted in 100% flowering of gigas plants under the 24-h photoperiod. Applied gibberellin A3 inhibited flowering in gigas plants given partial cold induction. Grafting studies showed the promotive effect of vernalisation occurred in the shoot. Grafting studies were also used to examine the physiological basis of delayed flowering in the gigas mutant. These studies indicated that gigas plants produced normal levels of flower inhibitor and they responded in a normal manner to the floral stimulus, Reciprocal grafts were made between the gigas mutant and the wild-type initial line. Under the 24-h photoperiod, either a wild-type root-stock with cotyledons or a wild-type shoot induced flowering in a gigas graft partner. However, under a 9-h photoperiod, flowering was only induced if the wild-type partner possessed both roots and a shoot. We conclude that gigas plants are deficient in the floral stimulus or a precursor which can be supplied across a graft union by a wild-type donor. Of the 12 major flowering genes known in pea, Gi is the first found to act on the synthesis pathway for the floral stimulus.  相似文献   

6.
Embryogenesis in higher plants requires the precise regulation of cell division, orientation of cell elongation and specification of cell differentiation. The division plane is determined by the position of a new cell plate at cytokinesis. A mutant of pea has been isolated in which both the embryo pattern and surface morphology is altered. The phenotype of the mutant is manifest primarily in the cotyledons where cell plates only partially form, generating cell wall stubs and multinucleate cells. Some cotyledonary cells of the mutant proceed through nine DNA replication cycles, including nuclear division, but not cytokinesis, producing nuclei with a DNA content of ca. 1000C. The cytological phenotype of the mutant could be mimicked by the treatment of wild-type cells with caffeine. We have termed this mutant cytokinesis-defective (cyd). © 1995 Wiley-Liss, Inc.  相似文献   

7.
8.
The lax-a homeotic mutant of barley has flowers in which lodicules are replaced by stamens (giving five stamens per flower). RFLP mapping of an F2 population from a Bonus lax-a 1 x H. spontaneum cross showed that the mutation was on the short arm of chromosome 7(5H), closely linked to the centromere. An additional F2 population was used to show that the lax-a mutation gave the five-stamen phenotype in all flowers of 6-rowed spikes and that hoods were elevated and reduced in size in lax-a/Hooded double-mutant plants.  相似文献   

9.
In several studies plant lectins have shown promise as transgenic resistance factors against various insect pests. We have here shown that pea seed lectin is a potential candidate for use against pollen beetle, a serious pest of Brassica oilseeds. In feeding assays where pollen beetle larvae were fed oilseed rape anthers soaked in a 1% solution of pea lectin there was a reduction in survival of 84% compared to larvae on control treatment and the weight of surviving larvae was reduced by 79%. When a 10% solution of pea lectin was used all larvae were dead after 4 days of testing. To further evaluate the potential use of pea lectin, transgenic plants of oilseed rape (Brassica napus cv. Westar) were produced in which the pea lectin gene under control of the pollen-specific promoter Sta44-4 was introduced. In 11 out of 20 tested plants of the T0-generation there was a significant reduction in larval weight, which ranged up to 46% compared to the control. A small but significant reduction in larval survival rate was also observed. In the T2-generation significant weight reductions, with a maximum of 32%, were obtained in 10 out of 33 comparisons between transgenic plants and their controls. Pea lectin concentrations in anthers of transgenic T2-plants ranged up to 1.5% of total soluble protein. There was a negative correlation between lectin concentration and larval growth. Plants from test groups with significant differences in larval weights had a significantly higher mean pea lectin concentration, 0.64% compared to 0.15% for plants from test groups without effect on larval weight. These results support the conclusion that pea lectin is a promising resistance factor for use in Brassica oilseeds against pollen beetles.  相似文献   

10.
The lectin on the surface of 4- and 5-dold pea roots was located by the use of indirect immunofluorescence. Specific antibodies raised in rabbits against pea seed isolectin 2, which crossreact with root lectins, were used as primary immunoglobulins and were visualized with fluorescein- or tetramethylrhodamine-isothiocyanate-labeled goat antirabbit immunoglobulin G. Lectin was observed on the tips of newly formed, growing root hairs and on epidermal cells located just below the young hairs. On both types of cells, lectin was concentrated in dense small patches rather than uniformly distributed. Lectin-positive young hairs were grouped opposite the (proto)xylematic poles. Older but still-elongating root hairs presented only traces of lectin or none at all. A similar pattern of distribution was found in different pea cultivars, as well as in a supernodulating and a non-nodulating pea mutant. Growth in a nitrate concentration which inhibits nodulation did not affect lectin distribution on the surface of pea roots of this age. We tested whether or not the root zones where lectin was observed were susceptible to infection by Rhizobium leguminosarum. When low inoculum doses (consisting of less than 106 bacteria·ml-1) were placed next to lectin-positive epidermal cells and on newly formed root hairs, nodules on the primary roots were formed in 73% and 90% of the plants, respectively. Only a few plants showed primary root nodulation when the inoculum was placed on the root zone where lectin was scarce or absent. These results show that lectin is present at those sites on the pea root that are susceptible to infection by the bacterial symbiont.Abbreviations FITC fluorescein isothiocyanate - TRIC tetramethylrhodamine isothiocyanate  相似文献   

11.
Formate metabolism supported nitrogen-fixation activity in free-living cultures of Rhizobium japonicum. However, formate0dependent nitrogense activity was observed only in the presence of carbon sources such as glutamate, ribose or aspartate which by themselves were unable to support nitrogenase activity. Formate-dependent nitrogenase activity was not detected in the presence of carbon sources such as malate, gluconate or glycerol which by themselves supported nitrogenase activity. A mutant strain of R. japonicum was isolated that was unable to utilise formate and was shown to lack formate dehydrogenase activity. This mutant strain exhibited no formate-dependent nitrogenase activity. Both the wild-type and mutant strains nodulated soybean plants effectively and there were no significant differences in the plant dry weight or total nitrogen content of the respective plants. Furthermore pea bacteroids lacked formate dehydrogenase activity and exogenously added formate had no stimulatory effect on the endogenous oxygen uptake rate. The role of formate metabolism in symbiotic nitrogen fixation is discussed.Abbreviation FDH formate dehydrogenase  相似文献   

12.
M. George Jones 《Planta》1987,172(2):280-284
The procera mutant of tomato (Lycopersicon esculentum L.) has a phenotype which is remarkably similar to that of normal tomatoes treated with exogenous gibberellin (GA), indicating that it might be a GA over-producer. However, analysis of endogenous GAs by gas chromatography-mass spectrometry showed that Procera actually has lower levels of GA20 and GA1 than normal. The reason for these anomalously low GA levels is not clear, as there was no difference between procera and normal plants in their ability to metabolize [3H]GA20. The procera mutant responded to exogenous gibberellic acid with increased extension growth, but the proportional response for a given dose of GA was the same in procera and normal plants. It therefore appears that the procera mutation does not directly affect either the GA status of the plant, or its ability to respond to GA.Abbreviations GA gibberellin - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - MeTMSi methyl trimethylsilyl - SIM selected ion monitoring  相似文献   

13.
Fourteen heat resistant mutant strains were isolated from a wild-type strain (PP201, Nod+ Fix+) of Rhizobium sp. (Cajanus) by giving it a heat shock of 43°C. These mutant strains showed a greater increase in optical density (O.D.) and a higher viable cell count in both rhizospheric and non-rhizospheric soil at high temperature. Symbiotic studies showed that pigeon pea plants inoculated with a few mutant strains had ineffective nodules (Nod+ Fix) under controlled temperature (43°C) conditions, but under natural high temperature (40–45°C) conditions, the host plants infected with all the mutant strains showed higher total shoot nitrogen than the plants inoculated with the parent strain. Four mutant strains (HR-3, HR-6, HR-10 and HR-12) were found to be highly efficient for all the symbiotic parameters, and thus have the potential to be used as bioinoculants in the North-Western regions of India during the summer season.  相似文献   

14.
The tomato (Lycopersicon esculentum (L.) Mill.) ghost plant is a mutant of the San Marzano cultivar affected in carotenoid biosynthesis. ghost plants exhibit a variable pattern of pigment biosynthesis during development. Cotyledons are green but true leaves are white. Green sectors, which appear to be clonal in origin, are frequently observed in the white tissue. Because of the lack of photosynthesis ghost plants have a very low viability in soil. We have developed a strategy for propagating ghost plants that employs organ culture to generate variegated green-white plants which, supported by the photosynthetic green areas, develop in soil to almost wild-type size. These plants were used to analyze the pigment content of the different tissues observed during development and plastid ultrastructure. Cotyledons and green leaves contain both colored carotenoids and chlorophyll but only the colorless carotenoid phytoene accumulates in white leaves. the plastids in the white tissue of ghost leaves lack internal membrane structures but normal chloroplasts can be observed in the green areas. The chromoplasts of white fruits are also impaired in their ability to form thylakoid membranes.  相似文献   

15.
Strigolactones promote nodulation in pea   总被引:2,自引:0,他引:2  
Foo E  Davies NW 《Planta》2011,234(5):1073-1081
Strigolactones are recently defined plant hormones with roles in mycorrhizal symbiosis and shoot and root architecture. Their potential role in controlling nodulation, the related symbiosis between legumes and Rhizobium bacteria, was explored using the strigolactone-deficient rms1 mutant in pea (Pisum sativum L.). This work indicates that endogenous strigolactones are positive regulators of nodulation in pea, required for optimal nodule number but not for nodule formation per se. rms1 mutant root exudates and root tissue are almost completely deficient in strigolactones, and rms1 mutant plants have approximately 40% fewer nodules than wild-type plants. Treatment with the synthetic strigolactone GR24 elevated nodule number in wild-type pea plants and also elevated nodule number in rms1 mutant plants to a level similar to that seen in untreated wild-type plants. Grafting studies revealed that nodule number and strigolactone levels in root tissue of rms1 roots were unaffected by grafting to wild-type scions indicating that strigolactones in the root, but not shoot-derived factors, regulate nodule number and provide the first direct evidence that the shoot does not make a major contribution to root strigolactone levels.  相似文献   

16.
DeMason DA 《Planta》2005,222(1):151-166
A number of mutations that alter the form of the compound leaf in pea (Pisum sativum) has proven useful in elucidating the role that auxin might play in pea leaf development. The goals of this study were to determine if auxin application can rescue any of the pea leaf mutants and if gibberellic acid (GA) plays a role in leaf morphogenesis in pea. A tissue culture system was used to determine the effects of various auxins, GA or a GA biosynethesis inhibitor (paclobutrazol) on leaf development. The GA mutant, nana1 (na1) was analyzed. The uni-tac mutant was rescued by auxin and GA and rescue involved both a conversion of the terminal leaflet into a tendril and an addition of a pair of lateral tendrils. This rescue required the presence of cytokinin. The auxins tested varied in their effectiveness, although methyl-IAA worked best. The terminal tendrils of wildtype plantlets grown on paclobutrazol were converted into leaflets, stubs or were aborted. The number of lateral pinna pairs produced was reduced and leaf initiation was impaired. These abnormalities resembled those caused by auxin transport inhibitors and phenocopy the uni mutants. The na1 mutant shared some morphological features with the uni mutants; including, flowering late and producing leaves with fewer lateral pinna pairs. These results show that both auxin and GA play similar and significant roles in pea leaf development. Pea leaf morphogenesis might involve auxin regulation of GA biosynthesis and GA regulation of Uni expression.  相似文献   

17.
18.
Vitamin B6 is a cofactor for more than 140 essential enzymatic reactions and was recently proposed as a potent antioxidant, playing a role in the photoprotection of plants. De novo biosynthesis of the vitamin has been described relatively recently and is derived from simple sugar precursors as well as glutamine. In addition, the vitamin can be taken up from exogenous sources in a broad range of organisms, including plants. However, specific transporters have been identified only in yeast. Here we assess the ability of the family of Arabidopsis purine permeases (PUPs) to transport vitamin B6. Several members of the family complement the growth phenotype of a Saccharomyces cerevisiae mutant strain impaired in both de novo biosynthesis of vitamin B6 as well as its uptake. The strongest activity was observed with PUP1 and was confirmed by direct measurement of uptake in yeast as well as in planta, defining PUP1 as a high affinity transporter for pyridoxine. At the tissue level the protein is localised to hydathodes and here we use confocal microscopy to illustrate that at the cellular level it is targeted to the plasma membrane. Interestingly, we observe alterations in pyridoxine recycling from the guttation sap upon overexpression of PUP1 and in a pup1 mutant, consistent with the role of the protein in retrieval of pyridoxine. Furthermore, combining the pup1 mutant with a vitamin B6 de novo biosynthesis mutant (pdx1.3) corroborates that PUP1 is involved in the uptake of the vitamin.  相似文献   

19.
The endogenous gibberellins (GAs) from shoots of the GA-insensitive mutant,gai, ofArabidopsis thaliana were analyzed and compared with the GAs from the Landsberg erecta (Ler) line. Twenty GAs were identified in Ler plants by full-scan gas chromatography-mass spectrometry (GC-MS) and Kovats retention indices (KRI's). These GAs are members of the early-13-hydroxylation pathway (GA53, GA44, GA19, GA17, GA20, GA1, GA29, and GA8), the non-3,13-hydroxylation pathway (GA12, GA15, GA24, GA25, GA9, and GA51), and the early-3-hydroxylation pathway (GA37, GA27, GA36, GA13, GA4, and GA34). The same GAs, except GA53, GA44, GA37, and GA29 were detected in thegai mutant by the same methods. In addition, extracts fromgai plants contained GA41 and GA71. Both lines also contained several unknown GAs. In Ler plants these were mainly hydroxy-GA12 derivatives, whereas in thegai mutant hydroxy-GA24, hydroxy-GA25, and hydroxy-GA9 compounds were detected. Quantification of seven GAs by GC-selected ion monitoring (SIM), using internal standards, and comparisons of the ion intensities in the SIM chromatograms of the other thirteen GAs, demonstrated that thegai mutant had reduced levels of all C20-dicarboxylic acids (GA53, GA44, GA19, GA12, GA15, GA24, GA37, GA27, and GA36). In contrast,gai plants had increased levels of C20-tricarboxylic acid GAs (GA17, GA25, and GA41) and of all C19-GAs (GA20, GA1, GA8, GA9, GA51, GA4, GA34, and GA71) except GA29. The 3β-hydroxylated GAs, GA1 and GA4, and their respective 2β-hydroxylated derivatives, GA8 and GA34, were the most abundant GAs found in shoots of thegai mutant. Thus, thegai mutation inArabidopsis results in a phenotype that resembles GA-deficient mutants, is insensitive to both applied and endogenous GAs, and contains low levels of C20-dicarboxylic acid GAs and high levels of C19-GAs. This indicates that theGAI gene controls a step beyond the synthesis of an active GA. Thegai mutant is presumably a GA-receptor mutant or a mutant with a block in the transduction pathway between the receptor and stem elongation. We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA for [13C]GA8, and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility (grant No. DRR00480), for advice with mass spectrometry. This work was supported by a fellowship from the Spanish Ministry of Agriculture (I.N.I.A.) to M.T., by the U.S. Department of Energy under Contract DE-ACO2-76ERO-1338, and by U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号