首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alkaliphilic bacterium, Bacillus sp. strain K-1, produces extracellular xylanolytic enzymes such as xylanases, β-xylosidase, arabinofuranosidase, and acetyl esterase when grown in xylan medium. One of the extracellular xylanases that is stable in an alkaline state was purified to homogeneity by affinity adsorption-desorption on insoluble xylan. The enzyme bound to insoluble xylan but not to crystalline cellulose. The molecular mass of the purified xylan-binding xylanase was estimated to be approximately 23 kDa. The enzyme was stable at alkaline pHs up to 12. The optimum temperature and optimum pH of the enzyme activity were 60°C and 5.5, respectively. Metal ions such as Fe2+, Ca2+, and Mg2+ greatly increased the xylanase activity, whereas Mn2+ strongly inhibited it. We also demonstrated that the enzyme could hydrolyze the raw lignocellulosic substances effectively. The enzymatic products of xylan hydrolysis were a series of short-chain xylooligosaccharides, indicating that the enzyme was an endoxylanase.  相似文献   

2.
A thermostable amylase, possibly a β-amylase from Thermoactinomyces sp. no. 2 isolated from soil, is reported. The enzyme was purified 36-fold by acetone precipitation, ion-exchange chromatography, and Sephadex G-200 gel filtration, and the molecular weight was estimated at 31,600. The enzyme was characterized by demonstration of optimum activity at 60°C and pH 7 and by retention of 70% activity at 70°C (30 min). It was stimulated by Mn2+ and Fe2+ but strongly inhibited by Hg2+. Maltose was the only detectable product of hydrolysis of starches and was quantitatively highest in plantain starch hydrolysate.  相似文献   

3.
α-Amylase produced by Bacillus licheniformis CUMC305 was purified 212-fold with a 42% yield through a series of four steps. The purified enzyme was homogeneous as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme showed maximal activity at 90°C and pH 9.0, and 91% of this activity remained at 100°C. The enzyme retained 91, 79, and 71% maximal activity after 3 h of treatment at 60°C, 3 h at 70°C, and 90 min at 80°C, respectively, in the absence of substrate. On the contrary, in the presence of substrate (soluble starch), the α-amylase enzyme was fully stable after a 4-h incubation at 100°C. The enzyme showed 100% stability in the pH range 7 to 9; 95% stability at pH 10; and 84, 74, 68, and 50% stability at pH values of 6, 5, 4, and 3, respectively, after 18 h of treatment. The activation energy for this enzyme was calculated as 5.1 × 105 J/mol. The molecular weight was estimated to be 28,000 by sodium dodecyl sulfate-gel electrophoresis. The relative rates of hydrolysis of soluble starch, amylose, amylopectin, and glycogen were 1.27, 1.8, 1.94, and 2.28 mg/ml, respectively. Vmax values for hydrolysis of these substrates were calculated as 0.738, 1.08, 0.8, and 0.5 mg of maltose/ml per min, respectively. Of the cations, Na+, Ca2+, and Mg2+, showed stimulatory effect, whereas Hg2+, Cu2+, Ni2+, Zn2+, Ag+, Fe2+, Co2+, Cd2+, Al3+, and Mn2+ were inhibitory. Of the anions, azide, F, SO32−, SO43−, S2O32−, MoO42−, and Wo42− showed an excitant effect. p-Chloromercuribenzoic acid and sodium iodoacetate were inhibitory, whereas cysteine, reduced glutathione, thiourea, β-mercaptoethanol, and sodium glycerophosphate afforded protection to enzyme activity. α-Amylase was fairly resistant to EDTA treatment at 30°C, but heating at 90°C in presence of EDTA resulted in the complete loss of enzyme activity, which could be recovered partially by the addition of Cu2+ and Fe2+ but not by the addition of Ca2+ or any other divalent ions.  相似文献   

4.
An alkaliphilic, thermophilic Bacillus sp. (NCIM 59) produced extracellular xylose isomerase at pH 10 and 50°C by using xylose or wheat bran as the carbon source. The distribution of xylose isomerase as a function of growth in comparison with distributions of extra- and intracellular marker enzymes such as xylanase and β-galactosidase revealed that xylose isomerase was truly secreted as an extracellular enzyme and was not released because of sporulation or lysis. The enzyme was purified to homogeneity by ammonium sulfate precipitation followed by gel filtration, preparative polyacrylamide gel electrophoresis, and ion-exchange chromatography. The molecular weight of xylose isomerase was estimated to be 160,000 by gel filtration and 50,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating the presence of three subunits. The enzyme is most active at pH 8.0 and with incubation at 85°C for 20 min. Divalent metal ions Mg2+, Co2+, and Mn2+ were required for maximum activity of the enzyme. The Km values for D-xylose and D-glucose at 80°C and pH 7.5 were 6.66 and 142 mM, respectively, while Kcat values were 2.3 × 102 s-1 and 0.5 × 102 s-1, respectively.  相似文献   

5.
Summary An extracellular naringinase (an enzyme complex consisting of α-L-rhamnosidase and β-D-glucosidase activity, EC 3.2.1.40) that hydrolyses naringin (a trihydroxy flavonoid) for the production of rhamnose and glucose was purified from the culture filtrate of Aspergillus niger 1344. The enzyme was purified 38-fold by ammonium sulphate precipitation, ion exchange and gel filtration chromatography with an overall recovery of 19% with a specific activity of 867 units per mg of protein. The molecular mass of the purified enzyme was estimated to be about 168 kDa by gel filtration chromatography on a Sephadex G-200 column and the molecular mass of the subunits was estimated to be 85 kDa by sodium dodecyl sulphate-Polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme had an optimum pH of 4.0 and temperature of 50 °C, respectively. The naringinase was stable at 37 °C for 72 h, whereas at 40 °C the enzyme showed 50% inactivation after 96 h of incubation. Hg2+, SDS, p-chloromercuribenzoate, Cu2+ and Mn2+ completely inhibited the enzyme activity at a concentration of 2.5–10 mM, whereas, Ca2+, Co2+ and Mg2+ showed very little inactivation even at high concentrations (10–100 mM). The enzyme activity was strongly inhibited by rhamnose, the end product of naringin hydrolysis. The enzyme activity was accelerated by Mg2+ and remained stable for one year after storage at −20 °C. The purified enzyme preparation successfully hydrolysed naringin and rutin, but not hesperidin.  相似文献   

6.
An actinomycete strain 7326 producing cold-adapted α-amylase was isolated from the deep sea sediment of Prydz Bay, Antarctic. It was identified as Nocardiopsis based on morphology, 16S rRNA gene sequence analysis, and physiological and biochemical characteristics. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram activity staining of purified amylase showed a single band equal to a molecular mass of about 55 kDa. The optimal activity temperature of Nocardiopsis sp. 7326 amylase was 35°C, and the activity decreased dramatically at temperatures above 45°C. The enzyme was stable between pH 5 and 10, and exhibited a maximal activity at pH 8.0. Ca2+, Mn2+, Mg2+, Cu2+, and Co2+ stimulated the activity of the enzyme significantly, and Rb2+, Hg2+, and EDTA inhibited the activity. The hydrolysates of soluble starch by the enzyme were mainly glucose, maltose, and maltotriose. This is the first report on the isolation and characterization of cold-adapted amylase from Nocardiopsis sp.  相似文献   

7.
Glucose isomerase (EC 5.3.1.5) produced from Streptomyces flavogriseus was purified by fractionation with (NH4)2SO4 and chromatography on diethylaminoethyl (DEAE)-cellulose and DEAE-Sephadex A-50 columns. The purified enzyme was homogeneous as shown by ultracentrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Benzyl DEAE-cellulose, triethylaminoethyl-cellulose, and DEAE-cellulose were effective in the immobilization of partially purified glucose isomerase. Several differences in properties were found between purified soluble enzyme, immobilized enzyme (DEAE-cellulose-glucose isomerase), and heat-treated whole cells. Glucose and xylose served as substrate for the enzyme. Whole cells had the highest Km values for glucose and xylose; the soluble enzyme had the lowest values. The optimum temperature for activity of the soluble and immobilized enzymes was 70°C; that for whole cells was 75°C. The pH optimum for the three enzyme preparations was 7.5. Magnesium ion or Co2+ was required for enzyme activity; an addition effect resulted from the presence of both Mg2+ and Co2+. The enzyme activity was inhibited by Hg2+, Ag+, or Cu2+. The conversion ratio of the enzyme for isomerization was about 50%. The soluble and immobilized enzymes showed a greater heat stability than whole cells. The soluble enzyme was stable over a slightly wider pH (5.0 to 9.0) range than the immobilized enzyme and whole cells (pH 5.5 to 9.0). The molecular weight of the enzyme determined by the sedimentation equilibrium method was 171,000. A tetrameric structure for the enzyme was also indicated. After operating at 70°C for 5 days, the remaining enzyme activity of the immobilized enzyme and whole cells, which were used for the continuous isomerization of glucose in a plug-flow type of column in the presence of Mg2+ and Co2+, was 75 and 55%, respectively. Elimination of Co2+ decreased operational stability.  相似文献   

8.
A collagenolytic enzyme, produced byVibrio vulnificus CYK279H, was purified by ultrafiltration, dialysis, Q-Sepharose ion exchange and Superdex-200 gel chromatography. The enzyme from the supernatant was purified 13.2 fold, with a yield of 11.4%. The molecular weight of the purified enzyme was estimated by SDS-PAGE to be approximately 35.0 kDa. The N-terminal sequence of the enzyme was determined as Gly-Asp-Pro-Cys-Met-Pro-Ile-Ile-Asn. The optimum temperature and pH for the enzyme activity were 35°C and 7.5, respectively. The enzyme activity was stable within the pH and temperature ranges 6.8∼8.0 and 20∼35°C, respectively. The purified enzyme was strongly activated by Zn2+, Li2+, and Ca2+, but inhibited by Cu2+. In addition, the enzyme was strongly inhibited by 1, 10-phenanthroline and EDTA. The purified enzyme was suggested to be a neutral metalloprotease.  相似文献   

9.
A Zn2+-glycerophosphocholine cholinephosphodiesterase was purified with a specific activity of 4.6 μmole/min·mg protein from bovine brain membranes by procedures involving PI-PLC solubilization, concanavalin A affinity chromatography, CM-sephadex chromatography and Sephadex G-150 chromatography. Based on molecular weight determination gel chromatography and SDS polyacrylamide gel electrophoresis, the phosphodiesterase activity appears to be a dimeric protein (110 kDa) composed of two subunits with a molecular weight of approximately 54 kDa. The Km value for p-nitrophenylphosphocholine and the optimum pH were found to be 16 μM and pH 10.5, respectively. The phosphodiesterase was inhibited by Cu2+, but not the other divalent metal ions. The activity of the apoenzyme was remarkably activated by Co2+ or Zn2+, but not Mn2+ or Mg2+. In addition, the inactivation of the enzyme in glycine buffer was prevented by Mn2+ or Zn2+, but not Co2+ or Mg2. In a separate experiment, comparing properties of the purified and membrane-bound phosphodiesterases, the forms of two enzymes were quite similar except in stability. Both enzymes were more stable at pH 7.4 than pH 5 or 10. However, the membrane-bound enzyme was more stable than the soluble enzyme at all three pHs. These data suggest that the activity of the phosphodiesterase may be stabilized in-vivo.  相似文献   

10.
In this study, the extracellular thermostable alkaline protease out of A10 strain was purified 1.38-fold with 9.44% efficiency through the ammonium sulfate precipitation-dialysis and DE52 anion exchange chromatography methods. The molecular weight of the enzyme in question along with sodium dodecyl sulfate-polyacrylamide gel electrophoresis was determined to be approximately 40.55?kDa, whereas the optimum pH and temperature ratings were identified as 9.0 and 70?°C, respectively. It was seen that the enzyme had remained stable between pH 7.5–10.5 range, protecting more than 90% of its activity in the wake of 1?h incubation at 60–70?°C. It was also observed that the enzyme enhanced its activity in the presence of Mg2+, Mn2+, K+, while Fe2+, Ni2+, Zn2+, Ag+?and Co2+? decreased the activity. Ca2+, however, did not cause any change in the activity. The enzyme was seen to have been totally inhibited by phenylmethylsulfonyl fluoride, therefore, proved to be a serine alkaline protease.  相似文献   

11.
Extracellular α-amylase (EC 3.2.1.1) from Bacillus coagulans B 49 was purified to homogeneity by ion-exchange chromatography and gel filtration. The optimum pH and temperature for dextrinizing activity were 6–7 and 70°C and for saccharolytic activity were 7 and 60°C, respectively. Calcium inhibited α-amylase activity even at low concentrations (10 m ), and most of its activity could be restored by dialysis against EDTA. Other cations such as Mg2+, Fe2+, and Hg2+ also inhibited amylase activity, while Mn2+ exhibited a slight stimulatory effect. The activity of the enzyme was not affected by ethylenediaminetetraacetic acid (EDTA).  相似文献   

12.
《Process Biochemistry》2010,45(5):694-699
An extracellular halophilic α-amylase from Nesterenkonia sp. strain F was purified to homogeneity by 80% ethanol precipitation, Q-Sepharose anion exchange and Sephacryl S-200 gel filtration chromatography, with a 10.8-fold increase in specific activity. The molecular mass of the amylase was estimated to be 100 kDa and 106 kDa by SDS–PAGE and gel filtration chromatography, respectively. The enzyme showed maximal activity at pH 7.5 and 45 °C. The amylase was active in a wide range of salt concentrations (0–4 M) with its maximum activity at 0.5 M NaCl or 1 M KCl and was stable at the salts concentrations between 1 M and 4 M. Fe3+, Cu2+, Zn2+ and Al3+ strongly inhibited the enzyme, whereas Ca2+ stimulated the amylase activity. The α-amylase was inhibited by EDTA, but was not inhibited by PMSF and β-mercaptoethanol. The enzyme showed remarkable stability towards 0.5% SDS and sarcosyl, and 2% each of Triton X-100, Tween 80 and Tween 20. Km value of the amylase for soluble starch was 4.5 mg/ml. The amylase hydrolyzed 38% of raw wheat starch and 20% of corn starch in a period of 48 h. The major products of soluble starch hydrolysis were maltose, maltotriose and maltotetraose, indicating an α-amylase activity.  相似文献   

13.
A maltotetraose-forming amylase from Pseudomonas stutzeri was highly purified by adsorption on starch granules and by chromatographies on Sephadex G-100 and DEAE-cellulose. The purified enzyme showed a single band in polyacrylamide gel electrophoreses with or without sodium dodecylsulfate. The optimum pH for enzyme action on starch was 6.0-6.5, and the optimum temperature was 45°C. The purified enzyme attacked starch from the non-reducing end to produce α-anomer oligosaccharides. This indicated that the enzyme was an exo-α-amylase which had not hitherto been found. The enzyme activity was markedly inhibited by the addition of Cu2+, Hg2+, N-bromosuccinimide and 2,3-butanedione. The molecular weight of the enzyme determined by the method of Weber and Osborn was about 5.7 × 104. The isoelectric point of the enzyme was estimated to be 5.3 by polyacrylamide gel electrofocusing. The Km and k0 values of this enzyme for starch, glycogen, short chain amylose and some maltooligosaccharides were calculated from Lineweaver-Burk plots.  相似文献   

14.
A thermophilic Bacillus stearothermophilus F1 that produced an extremely thermostable alkaline protease was isolated from decomposed oil palm branches. The isolated protease was purified to homogeneity by heat treatment, ultrafiltration and gel filtration chromatography with a 128-fold increase in specific activity and 75% recovery. The protease, which is a serine-type enzyme, has a relative molecular mass of 33 500 by sodium dodecyl sulphate-polyacrylamide gel electrophoresis but only 20 000 by gel-filtration chromatography. The enzyme was optimally active at pH 9.0 and was stable for 24 h at 70° C and in the pH range from 8.0 to 10.0. It was capable of hydrolysing many soluble and insoluble protein substrates but no esterase activity was detected. The enzyme activity was markedly inhibited by Co2+ and Hg2+, whereas Mg2+, Fe2+, Cu2+, Zn2+ and Sr2+ had little or no inhibitory effect. However, Mn2+ strongly activated the protease activity. The protease exhibited a high degree of thermostability [t 1/2 (85° C) = 4 h, (90° C) = 25 min]. The stability at higher temperatures (85° C and above) was shown to be dependent on the presence of Ca2+. Correspondence to: A. B. Salleh  相似文献   

15.
An amylase which produces maltotriose from starch as the main product was found in the culture filtrate of a strain of Bacillus subtilis newly isolated from soil. The enzyme was purified to almost complete homogeneity, as judged by disc electrophoresis in polyacrylamide gel, by means of ammonium sulfate fractionation, DEAE-Sepharose column chromatography and Sephadex gel filtration.

The optimum pH and temperature of the enzyme were around 6~7 and 50°C, respectively. Metal ions such as Hg2+, Cu2+, Zn2+, Ni2+ and Fe2+ strongly inhibitied the enzyme activity. The molecular weight was found to be about 25,000 by gel filtration. The yields of maltotriose from short-chain amylose (DP 17), amylopectin, soluble starch and glycogen were about 69, 56, 56 and 40%, respectively.  相似文献   

16.
《Process Biochemistry》2007,42(5):791-797
An extracellular bleach stable protease from the fungus Aspergillus clavatus ES1, isolated from wastewater, was purified and characterized. The protease of ES1 strain was purified to homogeneity using acetone precipitation, Sephadex G-100 gel filtration and CM-Sepharose ion exchange chromatography, with a 7.5-fold increase in specific activity and 29% recovery. The molecular mass was estimated to be 32 kDa on SDS-PAGE. The optimum pH and temperature for the proteolytic activity were pH 8.5 and 50 °C, respectively. The enzyme was stable in the pH range of 7.0–9.0. The protease was activated by divalent cations such as Ca2+ and Mg2+.The alkaline protease showed extreme stability towards non-ionic surfactants (5% Tween 80 and 5% Triton X-100). In addition, the enzyme was relatively stable towards oxidizing agents, retaining more than 71 and 53% of its initial activity after 1 h incubation in the presence of 1 and 2% (w/v) sodium perborate, respectively.The N-terminal sequence of the first 15 amino acids of the purified alkaline protease of A. clavatus ES1 showed high similarity with other fungal alkaline proteases. The activity was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine-protease.  相似文献   

17.
The gene encoding an acid protease natively produced by Saccharomycopsis fibuligera was cloned and overexpressed in Yarrowia lipolytica and the resultant recombinant acid protease was purified and characterized. The molecular mass of the purified enzyme was estimated as 94.8 kDa by gel filtration chromatography. The optimal pH and temperature of the purified acid protease were 3.5 and 33°C, respectively, and the enzyme was very stable over a pH range of 1.0 ∼ 3.0. The recombinant acid protease was activated by Zn2+, but was inhibited by Hg2+, Fe2+, Fe3+, and Mg2+, EDTA, EGTA, iodoacetic acid, and pepstatin. The purified recombinant acid protease from the positive transformant 71 had high milk clotting activity, suggesting that it may be used as a rennet substitute in the cheese industry.  相似文献   

18.
An aminopeptidase was purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that included diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, gel filtration, and high-performance liquid chromatography over an anion-exchange column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed a single protein band with a molecular weight of 95,000. The aminopeptidase was capable of degrading several peptides by hydrolysis of the N-terminal amino acid. The peptidase had no endopeptidase or carboxypeptidase activity. The aminopeptidase activity was optimal at pH 7 and 40°C. The enzyme was completely inactivated by the p-chloromecuribenzoate mersalyl, chelating agents, and the divalent cations Cu2+ and Cd2+. The activity that was lost by treatment with the sulfhydryl-blocking reagents was restored with dithiothreitol or β-mercapto-ethanol, while Zn2+ or Co2+ restored the activity of the 1,10-phenantroline-treated enzyme. Kinetic studies indicated that the enzyme has a relatively low affinity for lysyl-p-nitroanilide (Km, 0.55 mM) but that it can hydrolyze this substrate at a high rate (Vmax, 30 μmol/min per mg of protein).  相似文献   

19.
An alkaline protease produced by Pseudomonas aeruginosa MN1, isolated from an alkaline tannery waste water, was purified and characterized. The enzyme was purified 25-fold by gel filtration and ion exchange chromatography to a specific activity of 82350 U mg−1. The molecular weight of the enzyme was estimated to be 32000 daltons. The optimum pH and temperature for the proteolytic activity were pH 8.00 and 60°C, respectively. Enzyme activity was inhibited by EDTA suggesting that the preparation contains a metalloprotease. Enzyme activity was strongly inhibited by Zn2+, Cu2+ and Hg2+(5 mM), while Ca2+ and Mn2+ resulted in partial inhibition. The enzyme is different from other Pseudomonas aeruginosa alkaline proteases in its stability at high temperature; it retained more than 90% and 66% of the initial activity after 15 and 120 min incubation at 60°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 291–295. Received 09 June 1999/ Accepted in revised form 24 January 2000  相似文献   

20.
The extracellular alkaline protease in the supernatant of cell culture of the marine yeast Aureobasidium pullulans 10 was purified to homogeneity with a 2.1-fold increase in specific protease activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography (Sephadex™ G-75), and anion-exchange chromatography (DEAE Sepharose Fast Flow). According to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis data, the molecular mass of the purified enzyme was estimated to be 32.0 kDa. The optimal pH and temperature of the purified enzyme were 9.0 and 45°C, respectively. The enzyme was activated by Cu2+ (at a concentration of 1.0 mM) and Mn2+ and inhibited by Hg2+, Fe2+, Fe3+, Zn2+, and Co2+. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride, but weakly inhibited by EDTA, 1–10-phenanthroline, and iodoacetic acid. The K m and V max values of the purified enzyme for casein were 0.25 mg/ml and 0.0286 μmol/min/mg of protein, respectively. After digestion of shrimp protein, spirulina (Arthospira platensis) protein, proteins of marine yeast strains N3C (Yarrowia lipolytica) and YA03a (Hanseniaspora uvarum), milk protein, and casein with the purified alkaline protease, angiotensin I converting enzyme (ACE) inhibitory activities of the resulting peptides reached 85.3%, 12.1%, 29.8%, 22.8%, 14.1%, and 15.5%, respectively, while the antioxidant activities of these were 52.1%. 54.6%, 25.1%, 35%, 12.5%, and 24.2%, respectively, indicating that ACE inhibitory activity of the resulting peptides from the shrimp protein and antioxidant activity of those produced from the spirulina protein were the highest, respectively. These results suggest that the bioactive peptides produced by digestion of the shrimp protein with the purified alkaline protease have potential applications in the food and pharmaceutical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号