首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Changes in the cholesterol levels dynamically alter the microenvironment of the plasma membrane and have been shown to modify functions of ion channels. However, the cellular effect of these modifications is largely unknown. In this report, we demonstrate that cholesterol levels modulate neuronal excitability in rat hippocampal neurons. Reduction of cholesterol levels shortened the duration and increased the firing frequency and peak amplitude of action potentials, while enrichment of cholesterol reversed the effect. Furthermore, we showed that reduction of cholesterol levels increased, while enrichment of cholesterol decreased the amplitude of the delayed rectifier IK currents. On the other hand, reduction of cholesterol levels slowed down the inactivation of the fast transient IA currents, but enrichment of cholesterol had no significant effect on the IA currents. Besides, alteration in cholesterol levels had no significant effect on the action potential in the presence of blockers for both IK and IA currents. These observations demonstrate that cholesterol levels bi-directionally regulate the neuronal excitability mainly through modifications of the IK and IA currents, suggesting an optimum level of cholesterol for the optimum excitability of neurons. Alterations in the neuronal cholesterol levels have been associated with aging, cognitive decline, neurodegenerative diseases, etc. Therefore, our findings are important for a deeper understanding of the relationship between the cholesterol level and dysfunctions of the brain at the molecular level.  相似文献   

2.
Insulin signaling to the brain is important not only for metabolic homeostasis but also for higher brain functions such as cognition. GABA (γ-aminobutyric acid) decreases neuronal excitability by activating GABA(A) channels that generate phasic and tonic currents. The level of tonic inhibition in neurons varies. In the hippocampus, interneurons and dentate gyrus granule cells normally have significant tonic currents under basal conditions in contrast to the CA1 pyramidal neurons where it is minimal. Here we show in acute rat hippocampal slices that insulin (1 nM) "turns on" new extrasynaptic GABA(A) channels in CA1 pyramidal neurons resulting in decreased frequency of action potential firing. The channels are activated by more than million times lower GABA concentrations than synaptic channels, generate tonic currents and show outward rectification. The single-channel current amplitude is related to the GABA concentration resulting in a single-channel GABA affinity (EC(50)) in intact CA1 neurons of 17 pM with the maximal current amplitude reached with 1 nM GABA. They are inhibited by GABA(A) antagonists but have novel pharmacology as the benzodiazepine flumazenil and zolpidem are inverse agonists. The results show that tonic rather than synaptic conductances regulate basal neuronal excitability when significant tonic conductance is expressed and demonstrate an unexpected hormonal control of the inhibitory channel subtypes and excitability of hippocampal neurons. The insulin-induced new channels provide a specific target for rescuing cognition in health and disease.  相似文献   

3.
Li CL  Zhang JH  Yang BF  Jiao JD  Wang L  Wu CF 《Regulatory peptides》2006,133(1-3):74-81
A new recombinant neurotoxic polypeptide ANEPIII (BmK ANEPIII) derived from Scorpion peptide, which was demonstrated with antineuroexcitation properties in animal models, was examined for its action on K+ currents in primary cultured rat hippocampal and cortical neurons using the patch clamp technique in the whole-cell configuration. The delayed rectifier K+ current (I(k)) was inhibited by externally applied recombinant BmK ANEPIII, while the transient A-current (I(A)) remained virtually unaffected. BmK ANEPIII 3 microM, reduced the delayed rectifier current by 28.2% and 23.6% in cultured rat hippocampal and cortical neurons, respectively. The concentration of half-maximal block was 155.1 nM for hippocampal neurons and 227.2 nM for cortical neurons, respectively. These results suggest that BmK ANEPIII affect K+ currents, which may lead to a reduction in neuronal excitability.  相似文献   

4.
Based on indirect evidence, a role for synaptically released copper and zinc as modulators of neuronal activity has been proposed. To test this proposal directly, we studied the effect of copper, zinc, and other divalent cations on voltage-dependent currents in dissociated toad olfactory neurons and on their firing rate induced by small depolarizing currents. Divalent cations in the nanomolar range sped up the activation kinetics and increased the amplitude of the inward sodium current. In the micromolar range, they caused a dose dependent inhibition of the inward Na+ and Ca2+ currents (INa and ICa) and reduced de amplitude of the Ca2+-dependent K+ outward current (ICa-K). On the other hand, the firing rate of olfactory neurons increased when exposed to nanomolar concentration of divalent cations and decreased when exposed to micromolar concentrations. This biphasic effect of divalent cations on neuronal excitability may be explained by the interaction of these ions with high and low affinity sites in voltage-gated channels. Our results support the idea that these ions are normal modulators of neuronal excitability.  相似文献   

5.
GnRH neurons are regulated by estradiol feedback through unknown mechanisms. Voltage-gated potassium channels determine the pattern of activity and response to synaptic inputs in many neurons. We used whole-cell patch-clamp to test whether estradiol feedback altered potassium currents in GnRH neurons. Adult mice were ovariectomized and some treated with estradiol implants to suppress reproductive neuroendocrine function; 1 wk later, brain slices were prepared for recording. Estradiol affected the amplitude, decay time, and the voltage dependence of both inactivation and activation of A-type potassium currents in these cells. Estradiol also altered a slowly inactivating current, I(K.) The estradiol-induced changes in I(A) contributed to marked changes in action potential properties. Estradiol increased excitability in GnRH neurons, decreasing both threshold and latency for action potential generation. To test whether estradiol altered phosphorylation of the channels or associated proteins, the broad-spectrum kinase inhibitor H7 was included in the recording pipette. H7 acutely reversed some but not all effects of estradiol on potassium currents. Estradiol did not affect I(A) or I(K) in paraventricular neurosecretory neurons, demonstrating a degree of specificity in these effects. Potassium channels are thus one target for estradiol regulation of GnRH neurons; this regulation involves changes in phosphorylation of potassium channel components.  相似文献   

6.
Cholesterol is a major component of membrane lipid rafts. It is more abundant in the brain than in other tissues and plays a critical role in maintaining brain function. We report here that a significant enhancement in apoptosis in rat cerebellar granule neurons (CGNs) was observed upon incubation with 5mM K(+) /serum free (LK-S) medium. Cholesterol enrichment further potentiated CGN apoptosis incubated under LK-S medium. On the contrary, cholesterol depletion using methyl-beta-cyclodextrin protected the CGNs from apoptosis induced by LK-S treatment. Cholesterol enrichment, however, did not induce apoptosis in CGNs that have been incubated with 25mM K(+) /serum medium. Mechanistically, increased I(K) currents and DNA fragmentation were found in CGNs incubated in LK-S, which was further potentiated in the presence of cholesterol. Cholesterol-treated CGNs also exhibited increased cAMP levels and up-regulation of Kv2.1 expression. Increased levels of activated form of PKA and phospho-CREB further supported activation of the cAMP/PKA pathway upon treatment of CGNs with cholesterol-containing LK-S medium. Conversely, inhibition of PKA or small G protein Gs abolished the increase in I(K) current and the potentiation of Kv2.1 expression, leading to reduced susceptibility of CGNs to LK-S and cholesterol-induced apoptosis. Our results demonstrate that the elevation of membrane cholesterol enhances CGN susceptibility to apoptotic stimuli via cAMP/PKA/CREB-dependent up-regulation of Kv2.1. Our data provide new evidence for the role of cholesterol in eliciting neuronal cell death.  相似文献   

7.
Non-receptor-tyrosine kinases (protein-tyrosine kinases) and non-receptor tyrosine phosphatases (PTPs) have been implicated in the regulation of ion channels, neuronal excitability, and synaptic plasticity. We previously showed that protein-tyrosine kinases such as Src kinase and PTPs such as PTPα and PTPε modulate the activity of delayed-rectifier K(+) channels (I(K)). Here we show cultured cortical neurons from PTPε knock-out (EKO) mice to exhibit increased excitability when compared with wild type (WT) mice, with larger spike discharge frequency, enhanced fast after-hyperpolarization, increased after-depolarization, and reduced spike width. A decrease in I(K) and a rise in large-conductance Ca(2+)-activated K(+) currents (mBK) were observed in EKO cortical neurons compared with WT. Parallel studies in transfected CHO cells indicate that Kv1.1, Kv1.2, Kv7.2/7.3, and mBK are plausible molecular correlates of this multifaceted modulation of K(+) channels by PTPε. In CHO cells, Kv1.1, Kv1.2, and Kv7.2/7.3 K(+) currents were up-regulated by PTPε, whereas mBK channel activity was reduced. The levels of tyrosine phosphorylation of Kv1.1, Kv1.2, Kv7.3, and mBK potassium channels were increased in the brain cortices of neonatal and adult EKO mice compared with WT, suggesting that PTPε in the brain modulates these channel proteins. Our data indicate that in EKO mice, the lack of PTPε-mediated dephosphorylation of Kv1.1, Kv1.2, and Kv7.3 leads to decreased I(K) density and enhanced after-depolarization. In addition, the deficient PTPε-mediated dephosphorylation of mBK channels likely contributes to enhanced mBK and fast after-hyperpolarization, spike shortening, and consequent increase in neuronal excitability observed in cortical neurons from EKO mice.  相似文献   

8.
SK channels are Ca2+-activated K+ channels that underlie after hyperpolarizing (AHP) currents and contribute to the shaping of the firing patterns and regulation of Ca2+ influx in a variety of neurons. The elucidation of SK channel function has recently benefited from the discovery of SK channel enhancers, the prototype of which is 1-EBIO. 1-EBIO exerts profound effects on neuronal excitability but displays a low potency and limited selectivity. This study reports the effects of DCEBIO, an intermediate conductance Ca2+-activated K+ channel modulator, and the effects of the recently identified potent SK channel enhancer NS309 on recombinant SK2 channels, neuronal apamin-sensitive AHP currents, and the excitability of CA1 neurons. NS309 and DCEBIO increased the amplitude and duration of the apamin-sensitive afterhyperpolarizing current without affecting the slow afterhyperpolarizing current in contrast to 1-EBIO. The potentiation by DCEBIO and NS309 was reversed by SK channel blockers. In current clamp experiments, NS309 enhanced the medium afterhyperpolarization (but not the slow afterhyperpolarization sAHP) and profoundly affected excitability by facilitating spike frequency adaptation in a frequency-independent manner. The potent and specific effect of NS309 on the excitability of CA1 pyramidal neurons makes this compound an ideal tool to assess the role of SK channels as possible targets for the treatment of disorders linked to neuronal hyperexcitability.  相似文献   

9.
Chronic pancreatitis (CP) is a relatively common disorder, characterized by glandular insufficiency and chronic, often intractable, pain. The mechanism of pain in CP is poorly understood. We have previously developed a model of trinitrobenzene sulphonic acid (TNBS)-induced CP that results in nociceptive sensitization in rats. This study was designed to examine changes in the excitability and alteration of voltage-gated K(+) currents of dorsal root ganglia (DRG) neurons innervating the pancreas. CP was induced in adult rats by an intraductal injection of TNBS. DRG neurons innervating the pancreas were identified by 1,1'-dioleyl-3,3,3',3-tetramethylindocarbocyanine methanesulfonate fluorescence labeling. Perforated patch-clamp recordings were made from acutely dissociated DRG neurons from control and TNBS-treated rats. Pancreas-specific DRG neurons displayed more depolarized resting potentials in TNBS-treated rats than those in controls (P < 0.02). Some neurons from the TNBS-treated group exhibited spontaneous firings. TNBS-induced CP also resulted in a dramatic reduction in rheobase (P < 0.05) and a significant increase in the number of action potentials evoked at twice rheobase (P < 0.05). Under voltage-clamp conditions, neurons from both groups exhibited transient A-type (I(A)) and sustained outward rectifier K(+) currents (I(K)). Compared with controls, the average I(A) but not the average I(K) density was significantly reduced in the TNBS-treated group (P < 0.05). The steady-state inactivation curve for I(A) was displaced by approximately 20 mV to more hyperpolarized levels after the TNBS treatment. These data suggest that TNBS treatment increases the excitability of pancreas-specific DRG neurons by suppressing I(A) density, thus identifying for the first time a specific molecular mechanism underlying chronic visceral pain and sensitization in CP.  相似文献   

10.
Gastrointestinal peristalsis is significantly dependent on the enteric nervous system. Constipation due to reduced peristalsis is a major side-effect of morphine, which limits the chronic usefulness of this excellent pain reliever in man. The ionic basis for the inhibition of enteric neuron excitability by morphine is not well characterized as previous studies have mainly utilized microelectrode recordings from whole mount myenteric plexus preparations in guinea pigs. Here we have developed a Swiss-Webster mouse myenteric neuron culture and examined their electrophysiological properties by patch-clamp techniques and determined the mechanism for morphine-induced decrease in neuronal excitability. Isolated neurons in culture were confirmed by immunostaining with pan-neuronal marker, β-III tubulin and two populations were identified by calbindin and calretinin staining. Distinct neuronal populations were further identified based on the presence and absence of an afterhyperpolarization (AHP). Cells with AHP expressed greater density of sodium currents. Morphine (3 µM) significantly reduced the amplitude of the action potential, increased the threshold for spike generation but did not alter the resting membrane potential. The decrease in excitability resulted from inhibition of sodium currents. In the presence of morphine, the steady-state voltage dependence of Na channels was shifted to the left with almost 50% of channels unavailable for activation from hyperpolarized potentials. During prolonged exposure to morphine (two hours), action potentials recovered, indicative of the development of tolerance in single enteric neurons. These results demonstrate the feasibility of isolating mouse myenteric neurons and establish sodium channel inhibition as a mechanism for morphine-induced decrease in neuronal excitability.  相似文献   

11.
In this study, we describe a novel form of anti-homeostatic plasticity produced after culturing spinal neurons with strychnine, but not bicuculline or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Strychnine caused a large increase in network excitability, detected as spontaneous synaptic currents and calcium transients. The calcium transients were associated with action potential firing and activation of gamma-aminobutyric acid (GABA(A)) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors as they were blocked by tetrodotoxin (TTX), bicuculline, and CNQX. After chronic blockade of glycine receptors (GlyRs), the frequency of synaptic transmission showed a significant enhancement demonstrating the phenomenon of anti-homeostatic plasticity. Spontaneous inhibitory glycinergic currents in treated cells showed a fourfold increase in frequency (from 0.55 to 2.4 Hz) and a 184% increase in average peak amplitude compared with control. Furthermore, the augmentation in excitability accelerated the decay time constant of miniature inhibitory post-synaptic currents. Strychnine caused an increase in GlyR current density, without changes in the apparent affinity. These findings support the idea of a post-synaptic action that partly explains the increase in synaptic transmission. This phenomenon of synaptic plasticity was blocked by TTX, an antibody against brain-derived neurotrophic factor (BDNF) and K252a suggesting the involvement of the neuronal activity-dependent BDNF-TrkB signaling pathway. These results show that the properties of GlyRs are regulated by the degree of neuronal activity in the developing network.  相似文献   

12.
Delayed rectifier voltage-gated K(+) (K(V)) channels are important determinants of neuronal excitability. However, the large number of K(V) subunits poses a major challenge to establish the molecular composition of the native neuronal K(+) currents. A large part (~60%) of the delayed rectifier current (I(K)) in small mouse dorsal root ganglion (DRG) neurons has been shown to be carried by both homotetrameric K(V)2.1 and heterotetrameric channels of K(V)2 subunits with silent K(V) subunits (K(V)S), while a contribution of K(V)1 channels has also been demonstrated. Because K(V)3 subunits also generate delayed rectifier currents, we investigated the contribution of K(V)3 subunits to I(K) in small mouse DRG neurons. After stromatoxin (ScTx) pretreatment to block the K(V)2-containing component, application of 1 mM TEA caused significant additional block, indicating that the ScTx-insensitive part of I(K) could include K(V)1, K(V)3, and/or M-current channels (KCNQ2/3). Combining ScTx and dendrotoxin confirmed a relevant contribution of K(V)2 and K(V)2/K(V)S, and K(V)1 subunits to I(K) in small mouse DRG neurons. After application of these toxins, a significant TEA-sensitive current (~19% of total I(K)) remained with biophysical properties that corresponded to those of K(V)3 currents obtained in expression systems. Using RT-PCR, we detected K(V)3.1-3 mRNA in DRG neurons. Furthermore, Western blot and immunocytochemistry using K(V)3.1-specific antibodies confirmed the presence of K(V)3.1 in cultured DRG neurons. These biophysical, pharmacological, and molecular results demonstrate a relevant contribution (~19%) of K(V)3-containing channels to I(K) in small mouse DRG neurons, supporting a substantial role for K(V)3 subunits in these neurons.  相似文献   

13.
14.
Estradiol has both negative and positive feedback actions upon gonadotropin-releasing hormone (GnRH) release; the latter actions trigger the preovulatory GnRH surge. Although neurobiological mechanisms of the transitions between feedback modes are becoming better understood, the roles of voltage-gated potassium currents, major contributors to neuronal excitability, are unknown. Estradiol alters two components of potassium currents in these cells: a transient current, I(A), and a sustained current, I(K). Kisspeptin is a potential mediator between estradiol and GnRH neurons and can act directly on GnRH neurons. We examined how estradiol, time of day, and kisspeptin interact to regulate these conductances in a mouse model exhibiting daily switches between estradiol negative (morning) and positive feedback (evening). Whole-cell voltage clamp recordings were made from GnRH neurons in brain slices from ovariectomized (OVX) mice and from OVX mice treated with estradiol (OVX+E). There were no diurnal changes in either I(A) or I(K) in GnRH neurons from OVX mice. In contrast, in GnRH neurons from OVX+E mice, I(A) and I(K) were greater during the morning when GnRH neuron activity is low and smaller in the evening when GnRH neuron activity is high. Estradiol increased I(A) in the morning and decreased it in the evening, relative to that in cells from OVX mice. Exogenously applied kisspeptin reduced I(A) regardless of time of day or estradiol status. Estradiol, interacting with time of day, and kisspeptin both depolarized I(A) activation. These findings extend our understanding of both the neurobiological mechanisms of estradiol negative vs. positive regulation of GnRH neurons and of kisspeptin action on these cells.  相似文献   

15.
The formation and maintenance of the central projections of identified bristle mechanosensory neurons with altered excitability were examined in Drosophila mosaics. Two mutants, eag (ether à go-go) and Sh (Shaker), are known to increase excitability of both nerve and muscle cells and enhance synaptic transmission by affecting different types of K+ currents. The eag Sh double mutant produces a synergistic effect, resulting in a greatly increased level of spontaneous neuronal activity and extreme behavioral phenotypes. By constructing mosaic flies containing small patches of doubly mutant cuticle, it was possible to alter the excitability of only one or two identified sensory cells without affecting the surrounding tissue. In these mosaic flies, the doubly mutant sensory cells were more responsive to tactile stimulation. A CoCl2 backfilling technique was utilized in staining the sensory cell projections. Both qualitative and quantitative comparisons were made between projections of cells having normal and increased levels of excitability. The length, branching characteristics, and number of terminal varicosities were analyzed for each sensory cell projection. Results indicate that, at the light microscopy level, these characteristics were not obviously altered by an increased level of excitability.  相似文献   

16.
M/KCNQ currents play a critical role in the determination of neuronal excitability. Many neurotransmitters and peptides modulate M/KCNQ current and neuronal excitability through their G protein-coupled receptors. Nerve growth factor (NGF) activates its receptor, a member of receptor tyrosine kinase (RTK) superfamily, and crucially modulates neuronal cell survival, proliferation, and differentiation. In this study, we studied the effect of NGF on the neuronal (rat superior cervical ganglion, SCG) M/KCNQ currents and excitability. As reported before, subpopulation SCG neurons with distinct firing properties could be classified into tonic, phasic-1, and phasic-2 neurons. NGF inhibited M/KCNQ currents by similar proportion in all three classes of SCG neurons but increased the excitability only significantly in tonic SCG neurons. The effect of NGF on excitability correlated with a smaller M-current density in tonic neurons. The present study indicates that NGF is an M/KCNQ channel modulator and the characteristic modulation of the neuronal excitability by NGF may have important physiological implications.  相似文献   

17.
Examinations carried out on command neurons of defensive behavior in the edible snail using electrophysiological methods and a chlortetracycline fluorescent probe revealed that a single sensitizing action alters electrical neuronal activity and the amount of bound calcium in the cells. An initial increase in the amount of bound calcium (the first 15–20 min after the sensitizing action) coincides in time with depolarization, enhancement of plasma membrane excitability, and a decrease of amplitude and duration of the excitatory postsynaptic potentials (EPSP) induced by sensory stimulations. Repeated pronounced increase in the bound calcium level develops 50–60 min after the sensitizing action and correlates with facilitation of neuronal responses to sensory stimuli. Alterations in the bound calcium level in command neurons of defensive behavior in the course of sensitization development differed in dynamics and direction from the previously described bound calcium shifts in the same cells in the course of habituation development.P. K. Anokhin Institute of Normal Physiology, Academy of Medical Sciences of the USSR Moscow. I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR Leningrad. Translated from Neirofiziologiya, Vol. 23, No. 4, pp. 418–427, July–August, 1991.  相似文献   

18.
Pyramidal neurons in the piriform cortex from olfactory-discrimination trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the post-burst after-hyperpolarization (AHP) which is generated by repetitive spike firing. AHP reduction is due to decreased conductance of a calcium-dependent potassium current, the sIAHP. We have previously shown that learning-induced AHP reduction is maintained by persistent protein kinase C (PKC) and extracellular regulated kinase (ERK) activation. However, the molecular machinery underlying this long-lasting modulation of intrinsic excitability is yet to be fully described. Here we examine whether the CaMKII, which is known to be crucial in learning, memory and synaptic plasticity processes, is instrumental for the maintenance of learning-induced AHP reduction. KN93, that selectively blocks CaMKII autophosphorylation at Thr286, reduced the AHP in neurons from trained and control rat to the same extent. Consequently, the differences in AHP amplitude and neuronal adaptation between neurons from trained rats and controls remained. Accordingly, the level of activated CaMKII was similar in pirifrom cortex samples taken form trained and control rats. Our data show that although CaMKII modulates the amplitude of AHP of pyramidal neurons in the piriform cortex, its activation is not required for maintaining learning-induced enhancement of neuronal excitability.  相似文献   

19.
Voltage-gated K(+) (Kv) channels are key determinants of membrane excitability in the nervous and cardiovascular systems, functioning to control resting membrane potentials, shape action potential waveforms and influence the responses to neurotransmitters and neurohormones. Consistent with this functional diversity, multiple types of Kv currents, with distinct biophysical properties and cellular/subcellular distributions, have been identified. Rapidly activating and inactivating Kv currents, typically referred to as I(A) (A-type) in neurons, for example, regulate repetitive firing rates, action potential back-propagation (into dendrites) and modulate synaptic responses. Currents with similar properties, referred to as I(to,f) (fast transient outward), expressed in cardiomyocytes, control the early phase of myocardial action potential repolarization. A number of studies have demonstrated critical roles for pore-forming (α) subunits of the Kv4 subfamily in the generation of native neuronal I(A) and cardiac I(to,f) channels. Studies in heterologous cells have also suggested important roles for a number of Kv channel accessory and regulatory proteins in the generation of functional I(A) and I(to,f) channels. Quantitative mass spectrometry-based proteomic analysis is increasingly recognized as a rapid and, importantly, unbiased, approach to identify the components of native macromolecular protein complexes. The recent application of proteomic approaches to identify the components of native neuronal (and cardiac) Kv4 channel complexes has revealed even greater complexity than anticipated. The continued emphasis on development of improved biochemical and analytical proteomic methods seems certain to accelerate progress and to provide important new insights into the molecular determinants of native ion channel protein complexes.  相似文献   

20.
Wang J  Chen G  Lu B  Wu CP 《Neuro-Signals》2003,12(2):78-88
Glial cell line-derived neurotrophic factor (GDNF) is best known for its long-term survival effect on dopaminergic neurons in the ventral midbrain. A recent study showed that acute application of GDNF to these neurons suppresses A-type potassium channels and potentiates neuronal excitability. Here we have characterized the acute effects of GDNF on Ca(2+) channels and synaptic transmission. GDNF rapidly and reversibly potentiated the high voltage-activated (HVA) Ca(2+) channel currents in cultured dopaminergic neurons. Analyses of channel kinetics indicate that GDNF decreased the activation time constant, increased the inactivation and deactivation time constants of HVA Ca(2+) channel currents. Ca(2+) imaging experiments demonstrate that GDNF facilitated Ca(2+) influx induced by membrane depolarization. To investigate the physiological consequences of the Ca(2+) channel modulation, we examined the acute effects of GDNF on excitatory synaptic transmission at synapses made by these dopaminergic neurons, which co-release the transmitter glutamate. Within 3 min of application, GDNF increased the amplitude of spontaneous and evoked excitatory autaptic- or multiple-postsynaptic currents. The frequency as well as the amplitude of miniature excitatory postsynaptic currents was also increased. These results reveal, for the first time, an acute effect of GDNF on synaptic transmission and its potential mechanisms, and suggest that an important function of GDNF for midbrain dopaminergic neurons is the acute modulation of transmission and ion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号