首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In spite of the current optimal therapy, the mortality of patients with ischemic heart disease (IHD) remains high, particularly in cases with diabetes mellitus (DM) as a co-morbidity. Myocardial infarct size is a major determinant of prognosis in IHD patients, and development of a novel strategy to limit infarction is of great clinical importance. Ischemic preconditioning (PC), postconditioning (PostC) and their mimetic agents have been shown to reduce infarct size in experiments using healthy animals. However, a variety of pharmacological agents have failed to demonstrate infarct size limitation in clinical trials. One of the possible reasons for the discrepancy between the results of animal experiments and clinical trials is that co-morbidities, including DM, modified myocardial responses to ischemia/reperfusion and to cardioprotective agents. Here we summarize observations of the effects of DM on myocardial infarct size and ischemic PC and PostC and discuss perspectives for protection of DM hearts.  相似文献   

2.
腺苷和乙酰胆碱后适应诱导的心肌保护作用   总被引:3,自引:0,他引:3  
Zang WJ  Sun L  Yu XJ 《生理学报》2007,59(5):593-600
近年来缺血后适应的提出成为抗再灌注损伤的里程碑,其良好的临床可控性和可靠的保护效应引起人们广泛关注。缺血后适应即在心肌长时间缺血后再灌注之前,进行数次短暂的再灌注,缺血的循环处理,诱导产生心肌保护效应,其循环次数和间隔时间存在种属差异。研究证实后适应不仅限制急性期梗死面积,还可以减轻长期损伤,其是否与保护血管内皮、抑制中性粒细胞介导的氧化损伤相关还存在争议。上调再灌注损伤补救激酶(reperfusion injury salvageHnase,RISK)通路是后适应保护的重要机制之一,即激活磷脂酰肌醇一3激酶(phosphatidy linositol3-kinase,P13K)-Akt途径和,或细胞外信号调节激酶(extracellular signal-regulatedkinase,ERK)途径,抑制线粒体通透性转换孔的开放,减少细胞凋亡和坏死。但是这两条途径的地位和关系还有待于进一步研究。为了更加适用于临床,研究者将机械调控转变为药物干预,观察药物能否模拟缺血后适应发挥保护作用,即药物后适应。腺苷是研究最广泛,也是最有希望成为临床正式用药的一种药物。我们实验室首先提出了乙酰胆碱可以模拟缺血后适应,通过线粒体ATP敏感钾通道发挥心肌保护效应。本文着重阐述缺血后适应保护缺血,再灌注损伤的效应和信号转导通路,尤其是腺苷和乙酰胆碱模拟药物后适应的可能机制和临床应用。  相似文献   

3.
Postconditioning enables cardioprotection against ischemia/reperfusion injury either by application of short, repetitive ischemic periods or by pharmacological intervention prior to reperfusion. Pharmacological postconditioning has been described for phosphodiesterase-5 inhibitors when the substances were applied as a permanent infusion. For clinical purposes, application of a bolus is more convenient. In a rat heart in situ model of ischemia reperfusion vardenafil or sildenafil were applied as a bolus prior to reperfusion. Cardioprotective effects were found over a broad dosage range. In accordance with current hypotheses on pharmacological postconditioning signaling, the protective effect was mediated by extracellular signal-regulated kinase and protein kinase C pathway. Interestingly, the extent of protection was independent of the concentration applied for both substances. Full protection comparable to ischemic postconditioning was reached with half-maximal human equivalence dose. In contrast, mean arterial pressure dropped upon bolus application in a dose-dependent manner. Taken together, the current study extends previous findings obtained in a permanent infusion model to bolus application. This is an important step toward clinical application of pharmacological postconditioning with sildenafil and vardenafil, especially because the beneficial effects were proven for concentrations with reduced hemodynamic side effects compared to the dosage applied for erectile dysfunction treatment.  相似文献   

4.
The biochemical events surrounding ischemia reperfusion injury in the acute setting are of great importance to furthering novel treatment options for myocardial infarction and cardiac complications of thoracic surgery. The ability of certain drugs to precondition the myocardium against ischemia reperfusion injury has led to multiple clinical trials, with little success. The isolated heart model allows acute observation of the functional effects of ischemia reperfusion injury in real time, including the effects of various pharmacological interventions administered at any time-point before or within the ischemia-reperfusion injury window. Since brief periods of ischemia can precondition the heart against ischemic injury, in situ aortic cannulation is performed to allow for functional assessment of non-preconditioned myocardium. A saline filled balloon is placed into the left ventricle to allow for real-time measurement of pressure generation. Ischemic injury is simulated by the cessation of perfusion buffer flow, followed by reperfusion. The duration of both ischemia and reperfusion can be modulated to examine biochemical events at any given time-point. Although the Langendorff isolated heart model does not allow for the consideration of systemic events affecting ischemia and reperfusion, it is an excellent model for the examination of acute functional and biochemical events within the window of ischemia reperfusion injury as well as the effect of pharmacological intervention on cardiac pre- and postconditioning. The goal of this protocol is to demonstrate how to perform in situ aortic cannulation and heart excision followed by ischemia/reperfusion injury in the Langendorff model.  相似文献   

5.

Background

We and others have reported that rapid ischemic postconditioning, interrupting early reperfusion after stroke, reduces infarction in rats. However, its extremely short therapeutic time windows, from a few seconds to minutes after reperfusion, may hinder its clinical translation. Thus, in this study we explored if delayed postconditioning, which is conducted a few hours after reperfusion, offers protection against stroke.

Methods and Results

Focal ischemia was generated by 30 min occlusion of bilateral common carotid artery (CCA) combined with permanent occlusion of middle cerebral artery (MCA); delayed postconditioning was performed by repetitive, brief occlusion and release of the bilateral CCAs, or of the ipsilateral CCA alone. As a result, delayed postconditioning performed at 3h and 6h after stroke robustly reduced infarct size, with the strongest protection achieved by delayed postconditioning with 6 cycles of 15 min occlusion/15 min release of the ipsilateral CCA executed from 6h. We found that this delayed postconditioning provided long-term protection for up to two months by reducing infarction and improving outcomes of the behavioral tests; it also attenuated reduction in 2-[18F]-fluoro-2-deoxy-D-glucose (FDG)-uptake therefore improving metabolism, and reduced edema and blood brain barrier leakage. Reperfusion in ischemic stroke patients is usually achieved by tissue plasminogen activator (tPA) application, however, t-PA''s side effect may worsen ischemic injury. Thus, we tested whether delayed postconditioning counteracts the exacerbating effect of t-PA. The results showed that delayed postconditioning mitigated the worsening effect of t-PA on infarction.

Conclusion

Delayed postconditioning reduced ischemic injury after focal ischemia, which opens a new research avenue for stroke therapy and its underlying protective mechanisms.  相似文献   

6.
Brief episodes of myocardial ischemia-reperfusion were shown to be protective against reperfusion injury when used during early reperfusion after a prolonged ischemic episode. This phenomenon has been termed myocardial ischemic postconditioning. In this study, an effect of ischemic postconditioning on persistent reperfusion-induced ventricular fibrillation was studied in the rat isolated heart. 2 minutes of global ischemia on the 15th minute of reperfusion after 30 minutes of regional ischemia effectively abolished the persistent ventricular fibrillation. In non-postconditioned hearts, the ventricular fibrillation continued to the end of reperfusion. The ischemic postconditioning seems to exert a strong antiarrhythmic effect protecting the heart against persistent reperfusion-induced ventricular tachyarrhythmias.  相似文献   

7.
Reactive oxygen species (ROS) generated by ischemic and pharmacological preconditioning are known to act as triggers of cardiac protection; however, the involvement of ROS in ischemic and pharmacological postconditioning (PostC) in vivo and in vitro is unknown. We tested the hypothesis that ROS are involved in PostC in the mouse heart in vivo and in the isolated adult cardiac myocyte (ACM). Mice were subjected to 30 min coronary artery occlusion followed by 2 h of reperfusion with or without ischemic or pharmacologic PostC (three cycles of 20 s reperfusion/ischemia; 1.4% isoflurane; 10 mg/kg SNC-121). Additional groups were treated with 2-mercaptopropionyl glycine (MPG), a ROS scavenger, 10 min before or after the PostC stimuli. Ischemia-, isoflurane-, and SNC-121- induced PostC reduced infarct size (24.1+/-3.2, 15.7+/-2.6, 24.9+/-2.6%, p<0.05, respectively) compared to the control group (43.4+/-3.3%). These cardiac protective effects were abolished by MPG when administered before (40.0+/-3.6, 39.3+/-3.1, 38.5+/-1.6%, respectively), but not after the PostC stimuli (26.6+/-2.3, 17.0+/-2.2, 23.9+/-1.7%, respectively). Additionally, ACM were subjected to a simulated ischemia/reperfusion protocol with isoflurane and SNC PostC. Isoflurane- and SNC-induced PostC in vitro were abolished by prior treatment with MPG. These data indicate that ROS signaling is an essential trigger of ischemic and pharmacological PostC and this is occurring at the level of the cardiac myocyte.  相似文献   

8.
During myocardial ischemia/reperfusion, mitochondria are both a source and a target of injury. In cardioprotective maneuvers such as ischemic and pharmacological pre- and postconditioning mitochondria have a decisive role. Since about 99% of the mitochondrial proteins are encoded in the nucleus, deleterious and protective mitochondrial effects most likely comprise the import of cytosolic proteins. The present review therefore discusses the role of mitochondria in myocardial ischemia/reperfusion injury and protection from it, focusing on some cytosolic proteins, which are translocated into mitochondria before, during, or following ischemia/reperfusion. Both morphological and functional alterations are discussed at the level of the heart, the cardiomyocyte and/or the mitochondrion itself. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

9.
目的:观察缺血后处理对大鼠局灶性脑缺血再灌注损伤后TLR4通路表达的影响。方法:成年健康雄性SD大鼠110只,随机分为假手术组(sham组)(n=10)、缺血再灌注组(I/R组)和后处理组(IP组),后两组又依据缺血再灌注6h、12h、24h、48h、72h不同的时间点再分五个亚组。对各组行神经行为学评分,脑组织梗死体积测量,TUNEL技术检测神经细胞凋亡的情况,免疫组织化学技术观察各组大鼠脑组织TLR4、NF-κB和TNF-α蛋白的表达,原位杂交方法检测各组大鼠脑组织TLR4mRNA、NF-κBmRNA的表达。结果:缺血后处理可下调TLR4、NF-κB、TNF-α细胞炎性因子的表达,抑制细胞凋亡、减少脑梗死体积,改善神经行为。结论:后处理可通过抑制TLR4信号通路表达,减少脑梗死体积,改善神经功能。  相似文献   

10.
Heart diseases due to myocardial ischemia, such as myocardial infarction or ischemic heart failure, are major causes of death in developed countries, and their number is unfortunately still growing. Preliminary exploration into the pathophysiology of ischemia-reperfusion injury, together with the accumulation of clinical evidence, led to the discovery of ischemic preconditioning, which has been the main hypothesis for over three decades for how ischemia-reperfusion injury can be attenuated. The subcellular pathophysiological mechanism of ischemia-reperfusion injury and preconditioning-induced cardioprotection is not well understood, but extensive research into components, including autacoids, ion channels, receptors, subcellular signaling cascades, and mitochondrial modulators, as well as strategies for modulating these components, has made evolutional progress. Owing to the accumulation of both basic and clinical evidence, the idea of ischemic postconditioning with a cardioprotective potential has been discovered and established, making it possible to apply this knowledge in the clinical setting after ischemia-reperfusion insult. Another a great outcome has been the launch of translational studies that apply basic findings for manipulating ischemia-reperfusion injury into practical clinical treatments against ischemic heart diseases. In this review, we discuss the current findings regarding the fundamental pathophysiological mechanisms of ischemia-reperfusion injury, the associated protective mechanisms of ischemic pre- and postconditioning, and the potential seeds for molecular, pharmacological, or mechanical treatments against ischemia-reperfusion injury, as well as subsequent adverse outcomes by modulation of subcellular signaling mechanisms (especially mitochondrial function). We also review emerging translational clinical trials and the subsistent clinical comorbidities that need to be overcome to make these trials applicable in clinical medicine.  相似文献   

11.
Whether ischemic postconditioning (IPC) can significantly alleviate ischemic injury hinges on the appropriate measure. In this study, the expression RGMa and IL-1β, IL-6 are investigated to estimate the therapeutic benefits of various postconditioning strategies after cerebral ischemia/reperfusion. The study consists of the sham-operated group and five treatment groups: ischemia/reperfusion (I/R), two proximate ischemic postconditioning (IPC-S and IPC-M), remote postconditioning (RIPC) and delayed postconditioning (DIPC) groups. We find that rats in IPC and RIPC groups exhibit significantly less neural deficit and lower infarct volume than that in I/R and DIPC groups after ischemia/reperfusion. Moreover, in ischemic cortex and hippocampus, the mRNA level of RGMa is much lower in IPC and RIPC groups. Immunohistochemical analysis indicates that the expression of RGMa, IL-1β and IL-6 are reduced in IPC and RIPC groups (especially in IPC-S group). Furthermore, neurofilament staining reveals that the rats in IPC and RIPC groups have less axonal injury than that in I/R and DIPC groups. Our studies suggest that the optimal strategy to attenuate cerebral ischemia/reperfusion is achieved by early, short-term, and multiple cycles of proximal IPC. The cerebral protective effect of IPC may be associated with the decreased expression of RGMa and inflammation mediators.  相似文献   

12.
心肺复苏后脑缺血再灌注损伤是一个复杂的病理生理变化过程,由多种损伤机制共同参与。自心肺复苏后系统性综合治疗和亚低温治疗在临床上广泛应用后,目前已有多种治疗理念在不同的动物实验和动物模型基础上被提出,包括缺血预处理、药物预处理、缺血后处理、和药物后处理,而后吸入麻醉药对心肺复苏后脑缺血再灌注损伤的保护作用受到了人们的重视,而七氟烷后处理已经成为目前研究的热点之一。为了指导临床上的心肺复苏,人们一直在利用不同动物模型,探究不同保护方法,寻找有效的脑保护药物。而各种治疗理念的提出均是建立在动物实验和动物模型的基础上,窒息性心肺复苏模型模拟围术期气道梗阻,能较贴切的复制临床上由窒息引起的心肺复苏后脑损伤,对将来指导临床复苏具有重大意义。  相似文献   

13.
Ischemic heart disease (IHD) is among the most important and top ranked causes of death in the world, and its preventive and interventional mechanisms are actively being investigated. Preconditioning may still be beneficial in some situations such as IHD. Development of cardioprotective agents to improve myocardial function, to decrease the incidence of arrhythmias, to delay the onset of necrosis, and to limit the total extent of infarction during IHD is of great clinical importance. In order to reduce morbidity, a new treatment modality must be developed, and oxytocin may indeed be one of the candidates. There is increasing experimental evidence indicating that oxytocin may have cardioprotective effects either by decreasing the extent of reperfusion injury or by pharmacologic preconditioning activity. This review shows that in the presence of oxytocin, the cardioprotective effects may be increased to some extent. The presented board of evidence focuses on the valuable effects of oxytocin on myocardial function and candidates it for future clinical studies in the realm of ischemic heart diseases.  相似文献   

14.
Background: Hepatic ischemia and reperfusion injury (IRI) is a major complication in liver surgery, and hepatic steatosis is a primary factor aggravating cellular injury during IRI. Both pro-inflammatory cytokines and reactive oxygen species (ROS) are key mediators of hepatic IRI. Ischemic preconditioning (IpreC), remote ischemia preconditioning (RIPC) and ischemic postconditioning (IpostC) have offered protections on hepatic IRI, but all these methods have their own shortcomings. Grape seed proanthocyanidins (GSP) has a broad spectrum of pharmacological properties against oxidative stress. Thus, GSP has potential protective effects against hepatic IRI.Methods: C57BL/6 mice suffering 30mins hepatic ischemia process were sacrificed after 1h reperfusion to build murine warm hepatic IRI model. The mice were injected GSP intraperitoneally 10, 20, 40mg/kg/day for 3 weeks as pharmacological preconditioning. Obese mice fed with high-fat diet for 24 weeks before used. Three pathways related to IRI, including ROS elimination, pro-inflammatory cytokines release and hypoxia responses were examined.Results: Our data show that GSP could significantly reduce hepatic IRI by protecting hepatocyte function and increasing the activity of ROS scavengers, as well as decreasing cytokines levels. At the same time, GSP also enhance the hypoxia tolerance response. Combined GSP and postconditioning can provided synergistic protection. In the obese mice suffering hepatic IRI group, GSP was more effective than postconditioning on protecting liver against IRI, and the combined strategy was obviously superior to the solo treatment.Conclusion: GSP could protect liver against IRI: particularly in high-fat diet induced obese mice. GSP used as pharmacological preconditioning and combined with other protocols have huge potential to be used in clinical.  相似文献   

15.
Ischemic preconditioning affords the most powerful protection to a heart submitted to a prolonged ischemia-reperfusion. During the past decade, a huge amount of work allowed to better understand the features of this protective effect as well as the molecular mechanisms. Ischemic preconditioning reduces infarct size and improves functional recovery; its effects on arrhythmias remain debated. Triggering of the protection involves cell surface receptors that activate pro-survival pathways including protein kinase C, PI3-kinase, possibly Akt and ERK1/2, whose downstream targets remain to be determined. Much attention has been recently focused on the role of mitochondrial K(+)ATP channels and the permeability transition pore that seem to play a major role in the progression toward irreversible cellular injury. Based on these experimental studies attempts have been made to transfer preconditioning from bench to bedside. Human experimental models of ischemic preconditioning have been set up, including cardiac surgery, coronary angioplasty or treadmill exercise, to perform pathophysiological studies. Yet, protecting the heart of CAD (coronary artery disease) patients requires a pharmacological approach. The IONA trial has been an example of the clinical utility of preconditioning. It helped to demonstrate that chronic administration of nicorandil, a K(+)ATP opener that mimics ischemic preconditioning in experimental preparations, improves the cardiovascular prognosis in CAD patients. Recent experimental studies appear further encouraging. It appears that "postconditioning" the heart (i.e. performing brief episodes of ischemia-reperfusion at the time of reperfusion) is as protective as preconditioning. In other words, a therapeutic intervention performed as late as at the time of reflow can still significantly limit infarct size. Further work is needed to determine whether this may be transferred to the clinical practice.  相似文献   

16.
Changes in the human heart muscle resulting from chronic coronary insufficiency have been analyzed using biopsies taken during surgery from nine patients with ischemic heart disease (IHD) and six patients with the WPW syndrome (without IHD). Histochemical analysis have shown that the atrial myocardium in IHD patients is characterized by an increased density of the microvascular network, increased phosphorylase activity, and decreased succinate dehydrogenase activity. Virtually the same changes have proved to occur in the myocardium of rats adapted to hypoxia by means of repeated exposure in a low-pressure chamber. According to the results of two-dimensional electrophoresis and immunoblotting, acid (but not alkaline) isoforms of inducible HSP70 proteins appear in the myocardium of IHD patients. It is concluded that the myocardium of IHD patients undergoes adaptive changes at the tissue level in response to repeated exposure to ischemia in the course of development of this disease. It is proposed that activation of the synthesis of alkaline HSP70 isoforms in the myocardium of cardiological patients may provide the possibility of improving its resistance to the impact of ischemia and reperfusion (this possibility is not realized under conditions of IHD).  相似文献   

17.
Ischaemic postconditioning is a phenomenon whereby short periods of ischaemia applied during the start of reperfusion protect the myocardium from the damaging consequences of reperfusion. As such, pharmacological-induced postconditioning represents an attractive therapeutic strategy for reducing reperfusion injury during cardiac surgery and following myocardial infarction. The primary aim of this study was to determine the role of large-conductance Ca2(+)-activated potassium channels (BK(Ca) channels) in adenosine A? receptor-induced pharmacological postconditioning in the rat embryonic cardiomyoblast-derived cell line H9c2. H9c2 cells were exposed to 6 h hypoxia (0.5% O?) followed by 18 h reoxygenation (H/R) after which cell viability was assessed by monitoring lactate dehydrogenase (LDH) release and caspase-3 activation. The adenosine A? receptor agonist N?-cyclopentyladenosine (CPA; 100 nmol/L) or the BK(Ca) channel opener NS1619 (10 μmol/L) were added for 30 min at the start of reoxygenation following 6 h hypoxic exposure. Where appropriate, cells were treated (15 min) before pharmacological postconditioning with the BK(Ca) channel blockers paxilline (1 μmol/L) or iberiotoxin (100 nmol/L). Pharmacological postconditioning with CPA or NS1619 significantly reduced H/R-induced LDH release. Treatment with paxilline or iberiotoxin attenuated adenosine A? receptor and NS1619-induced pharmacological postconditioning. These results have shown for the first time that BK(Ca) channels are involved in adenosine A? receptor-induced pharmacological postconditioning in a cell model system.  相似文献   

18.
目的:探讨缺血后处理对高胆固醇血症基础上发生的心肌缺血/再灌注损伤的影响及其可能的机制。方法:建立食源性高胆固醇血症大鼠模型,运用TTC染色、酶活性检测等方法测定缺血/再灌注所致的心肌损伤,用实时定量RT-PCR方法检测心肌组织中低氧诱导因子-1α(HIF-1α)mRNA水平,用Western blot方法检测HIF-1α蛋白水平。结果:高胆固醇血症加重了缺血/再灌注造成的心肌损伤,而缺血后处理显著缩小了高胆固醇血症大鼠缺血/再灌注所致的心梗面积,降低了血清肌酸激酶(CK)的活性,减少了心肌细胞凋亡。同时,缺血后处理提高了高胆固醇血症大鼠缺血心肌组织中HIF-1α的蛋白水平。结论:缺血后处理可以降低高胆固醇血症大鼠心肌对缺血/再灌注损伤的敏感性,其效应与心肌组织中HIF-1α的蛋白水平存在着相关性。  相似文献   

19.
王鹏  赵仁亮  吕敬雷  隋雪琴  高翔 《生物磁学》2012,(23):4419-4423
目的:观察缺血后处理对大鼠局灶性脑缺血再灌注损伤后TLR4通路表达的影响。方法:成年健康雄性SD大鼠110只,随机分为假手术组(sham组)(n=10)、缺血再灌注组(I/R组)和后处理组(IP组),后两组又依据缺血再灌注6h、12h、24h、48h、72h不同的时间点再分五个亚组。对各组行神经行为学评分,脑组织梗死体积测量,TUNEL技术检测神经细胞凋亡的情况,免疫组织化学技术观察各组大鼠脑组织TLR4、NF—KB和TNF—a蛋白的表达,原位杂交方法检测各组大鼠脑组织TLR4mRNA、NF-KBmRNA的表达。结果:缺血后处理可下调TLR4、NF-KB、TNF-a细胞炎性因子的表达,抑制细胞凋亡、减少脑梗死体积,改善神经行为。结论:后处理可通过抑制TLR4信号通路表达,减少脑梗死体积,改善神经功能。  相似文献   

20.
Protection of the heart from ischemia-reperfusion injury can be achieved by ischemic preconditioning and ischemic postconditioning. Previous studies revealed that a complex of pannexin-1 with the P2X(7) receptor forms a channel during ischemic preconditioning and ischemic postconditioning that results in the release of endogenous cardioprotectants. ATP binds to P2X(7) receptors, inducing the formation of a channel in association with pannexin-1. We hypothesized that this channel would provide a pathway for the release of these same cardioprotectants. Preconditioning-isolated perfused rat hearts with 0.4 μM ATP preceding 40 min of ischemia minimized infarct size upon subsequent reperfusion (5% of risk area) and resulted in >80% recovery of left ventricular developed pressure. Postconditioning with ATP after ischemia during reperfusion was also protective (6% infarct and 72% recovery of left ventricular developed pressure). Antagonists of both pannexin-1 (carbenoxolone and mefloquine) and P2X(7) receptors (brilliant blue G and A438079) blocked ATP pre- and postconditioning, indicating that ATP protection was elicited via the opening of a pannexin-1/P2X(7) channel. An antagonist of binding of the endogenous cardioprotectant sphingosine 1-phosphate to its G protein-coupled receptor diminished protection by ATP, which is also consistent with an ATP-dependent release of cardioprotectants. Suramin, an antagonist of binding of ATP (and ADP) to P2Y receptors, was without effect on ATP protection. Benzoyl benzoyl-ATP, a more specific P2X(7) agonist, was also a potent pre- and postconditioning agent and sensitive to blockade by pannexin-1/P2X(7) channel antagonists. The data point out for the first time the potential of P2X(7) agonists as cardioprotectants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号