首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wilt caused by Verticillium dahliae significantly reduces cotton yields, as host resistance in commercially cultivated Gossypium species is lacking. Understanding the molecular basis of disease resistance in non‐commercial Gossypium species could galvanize the development of Verticillium wilt resistance in cultivated species. Nucleotide‐binding site leucine‐rich repeat (NBS‐LRR) proteins play a central role in plant defence against pathogens. In this study, we focused on the relationship between a locus enriched with eight NBS‐LRR genes and Verticillium wilt resistance in G. barbadense. Independent virus‐induced gene silencing of each of the eight NBS‐LRR genes in G. barbadense cultivar Hai 7124 revealed that silencing of GbaNA1 alone compromised the resistance of G. barbadense to V. dahliae isolate Vd991. In cultivar Hai 7124, GbaNA1 could be induced by V. dahliae isolate Vd991 and by ethylene, jasmonic acid and salicylic acid. Nuclear protein localization of GbaNA1 was demonstrated by transient expression. Sequencing of the GbaNA1 orthologue in nine G. hirsutum accessions revealed that all carried a non‐functional allele, caused by a premature peptide truncation. In addition, all 10 G. barbadense and nine G. hirsutum accessions tested carried a full‐length (~1140 amino acids) homologue of the V. dahliae race 1 resistance gene Gbve1, although some sequence polymorphisms were observed. Verticillium dahliae Vd991 is a non‐race 1 isolate that lacks the Ave1 gene. Thus, the resistance imparted by GbaNA1 appears to be mediated by a mechanism distinct from recognition of the fungal effector Ave1.  相似文献   

2.
Verticillium wilt of potato is caused by the fungus pathogen Verticillium dahliae. Present sRNA sequencing data revealed that miR482 was in response to V. dahliae infection, but the function in potato is elusive. Here, we characterized potato miR482 family and its putative role resistance to Verticillium wilt. Members of the potato miR482 superfamily are variable in sequence, but all variants target a class of disease‐resistance proteins with nucleotide binding site (NBS) and leucine‐rich repeat (LRR) motifs. When potato plantlets were infected with V. dahliae, the expression level of miR482e was downregulated, and that of several NBS‐LRR targets of miR482e were upregulated. Transgenic potato plantlets overexpressing miR482e showed hypersensitivity to V. dahliae infection. Using sRNA and degradome datasets, we validated that miR482e targets mRNAs of NBS‐LRR disease‐resistance proteins and triggers the production of trans‐acting (ta)‐siRNAs, most of which target mRNAs of defense‐related proteins. Thus, the hypersensitivity of transgenic potato could be explained by enhanced miR482e and miR482e‐derived ta‐siRNA‐mediated silencing on NBS‐LRR‐disease‐resistance proteins. It is speculated that a miR482‐mediated silencing cascade mechanism is involved in regulating potato resistance against V. dahliae infection and could be a counter defense action of plant in response to pathogen infection.  相似文献   

3.
Phytopathogen xylanases play critical roles in pathogenesis, likely due to their ability to degrade plant structural barriers and manipulate host immunity. As an invader of plant xylem vessels, the fungus Verticillium dahliae is thought to deploy complex cell wall degrading enzymes. Comparative genomics analyses revealed that the V. dahliae genome encodes a family of six xylanases, each possessing a glycosyl hydrolase 11 domain, but the functions of these enzymes are undetermined. Characterizing gene deletion mutants revealed that only V. dahliae xylanase 4 (VdXyn4) degraded the plant cell wall and contributed to the virulence of V. dahliae. VdXyn4 displayed cytotoxic activity and induced a necrosis phenotype during the late stages of infection, leading to vein and petiole collapse that depended on the enzyme simultaneously localizing to nuclei and chloroplasts. The internalization of VdXyn4 was in conjunction with that of the plasma membrane complexLeucine-rich repeat (LRR)-receptor-like kinase suppressor of BIR1-1 (SOBIR1)/LRR-RLK BRI1-associated kinase-1 (BAK1), but we could not rule out the possibility that VdXyn4 may also act as an apoplastic effector. Immune signaling (in the SA–JA pathways) induced by VdXyn4 relative to that induced by known immunity effectors was substantially delayed. While cytotoxic activity could be partially suppressed by known effectors, they failed to impede necrosis in Nicotiana benthamiana. Thus, unlike typical effectors, cytotoxicity of VdXyn4 plays a crucial intracellular role at the late stages of V. dahliae infection and colonization, especially following pathogen entry into the xylem; this cytotoxic activity is likely conserved in the corresponding enzyme families in plant vascular pathogens.

By virtue of its cytotoxic activity, Verticillium dahliae Xylanase induces necrosis, leading to vein and petiole collapse that depends on the enzyme simultaneously localizing to nuclei and chloroplasts.  相似文献   

4.
5.
Glycoside hydrolase (GH) family members act as virulence factors and regulate plant immune responses during pathogen infection. Here, we characterized the GH28 family member endopolygalacturonase VdEPG1 in Verticillium dahliae. VdEPG1 acts as a virulence factor during V. dahliae infection. The expression level of VdEPG1 was greatly increased in V. dahliae inoculated on cotton roots. VdEPG1 suppressed VdNLP1-mediated cell death by modulating pathogenesis-related genes in Nicotiana benthamiana. Knocking out VdEPG1 led to a significant decrease in the pathogenicity of V. dahliae in cotton. The deletion strains were more susceptible to osmotic stress and the ability of V. dahliae to utilize carbon sources was deficient. In addition, the deletion strains lost the ability to penetrate cellophane membrane, with mycelia showing a disordered arrangement on the membrane, and spore development was affected. A jasmonic acid (JA) pathway-related gene, GhOPR9, was identified as interacting with VdEPG1 in the yeast two-hybrid system. The interaction was further confirmed by bimolecular fluorescence complementation and luciferase complementation imaging assays in N. benthamiana leaves. GhOPR9 plays a positive role in the resistance of cotton to V. dahliae by regulating JA biosynthesis. These results indicate that VdEPG1 may be able to regulate host immune responses as a virulence factor through modulating the GhOPR9-mediated JA biosynthesis.  相似文献   

6.
Verticillium wilt is a disastrous vascular disease in plants caused by Verticillium dahliae. Verticillium pathogens secrete various disease-causing effectors in cotton. This study identified a subtilase gene GbSBT1 from Gossypium babardense and investigated the roles against V. dahliae infection. GbSBT1 gene expression is responsive to V. dahliae defense signals, jasmonic acid, and ethylene treatments. Moreover, the GbSBT1 protein is mainly localized in the cell membrane and moves into the cytoplasm following jasmonic acid and ethylene treatments. Silencing GbSBT1 gene expression through virus-induced GbSBT1 gene silencing reduced the tolerance of Pima-90 (resistant genotype), but not facilitated the infection process of V. dahliae in Coker-312 (sensitive genotype). Moreover, the ectopically expressed GbSBT1 gene enhanced the resistance of Arabidopsis to Fusarium oxysporum and V. dahliae infection and activated the expression levels of defense-related genes. Furthermore, pull-down, yeast two-hybrid assay, and BiFC analysis revealed that GbSBT1 interacts with a prohibitin (PHB)-like protein expressed in V. dahliae pathogens during infection. In summary, GbSBT1 recognizes the effector PHB protein secreted from V. dahliae and is involved in Verticillium-induced resistance in cotton.  相似文献   

7.
Anthocyanins are secondary metabolites that play important roles in plant adaption to adverse environments. The anthocyanin biosynthetic pathway is conserved in high plants. Previous studies revealed the significant role of anthocyanins in natural-colorized cotton. However, little is known about the involvement of anthocyanins in the interaction of cotton and pathogen. In this study, a pathogen-induced gene was isolated from Gossypium barbadense that encodes an anthocyanidin synthase protein (GbANS) with dioxygenase structures. GbANS was preferentially expressed in colored tissue. Silencing of GbANS significantly reduced the production of anthocyanins, as well as the cotton’s resistance to Verticillium dahliae. Biochemical studies revealed that GbANS-silenced cotton accumulated more hydrogen peroxide compared to control plants during the V. dahliae invasion process. This accumulation of hydrogen peroxide corresponded with increased cell death around the invasion sites, which in turn accelerated the V. dahliae infection. Taken together, we found that GbANS contributes to the biosynthesis of anthocyanins in cotton and anthocyanins positively regulate cotton’s resistance to V. dahliae.  相似文献   

8.
The mechanisms underlying the functional link between autophagy and plant innate immunity remain largely unknown. In this study, we investigated the autophagy-mediated plant defense responses against Verticillium dahliae (V. dahliae) infection by comparative proteomics and cellular analyses. An assessment of the autophagy activity and disease development showed that autophagic processes were tightly related to the tolerance of Arabidopsis plant to Verticillium wilt. An isobaric tags for relative and absolute quantification (iTRAQ)-based proteomics analysis was performed, and we identified a total of 780 differentially accumulated proteins (DAPs) between wild-type and mutant atg10-1 Arabidopsis plants upon V. dahliae infection, of which, 193 ATG8-family-interacting proteins were identified in silico and their associations with autophagy were verified for several selected proteins. Three important aspects of autophagy-mediated defense against V. dahliae infection were revealed: 1) autophagy is required for the activation of upstream defense responses; 2) autophagy-mediated mitochondrial degradation (mitophagy) occurs and is an important player in the defense process; and 3) autophagy promotes the transdifferentiation of perivascular cells and the formation of xylem hyperplasia, which are crucial for protection against this vascular disease. Together, our results provide several novel insights for understanding the functional association between autophagy and plant immune responses.  相似文献   

9.
10.
Verticillium wilt caused by soilborne fungus Verticillium dahliae could significantly reduce cotton yield. Here, we cloned a tomato Ve homologous gene, Gbve1, from an island cotton cultivar that is resistant to Verticillium wilt. We found that the Gbve1 gene was induced by V. dahliae and by phytohormones salicylic acid, jasmonic acid, and ethylene, but not by abscisic acid. The induction of Gbve1 in resistant cotton was quicker and stronger than in Verticillium-susceptible upland cotton following V. dahliae inoculation. Gbve1 promoter-driving GUS activity was found exclusively in the vascular bundles of roots and stems of transgenic Arabidopsis. Virus-induced silencing of endogenous genes in resistant cotton via targeting a fragment of the Gbve1 gene compromised cotton resistance to V. dahliae. Furthermore, we transformed the Gbve1 gene into Arabidopsis and upland cotton through Agrobacterium-mediated transformation. Overexpression of the Gbve1 gene endowed transgenic Arabidopsis and upland cotton with resistance to high aggressive defoliating and non-defoliating isolates of V. dahliae. And HR-mimic cell death was observed in the transgenic Arabidopsis. Our results demonstrate that the Gbve1 gene is responsible for resistance to V. dahliae in island cotton and can be used for breeding cotton varieties that are resistant to Verticillium wilt.  相似文献   

11.
12.
Secreted small cysteine-rich proteins (SCPs) play a critical role in modulating host immunity in plant–pathogen interactions. Bioinformatic analyses showed that the fungal pathogen Verticillium dahliae encodes more than 100 VdSCPs, but their roles in host–pathogen interactions have not been fully characterized. Transient expression of 123 VdSCP-encoding genes in Nicotiana benthamiana identified three candidate genes involved in host–pathogen interactions. The expression of these three proteins, VdSCP27, VdSCP113, and VdSCP126, in N. benthamiana resulted in cell death accompanied by a reactive oxygen species burst, callose deposition, and induction of defence genes. The three VdSCPs mainly localized to the periphery of the cell. BAK1 and SOBIR1 (associated with receptor-like protein) were required for the immunity triggered by these three VdSCPs in N. benthamiana. Site-directed mutagenesis showed that cysteine residues that form disulphide bonds are essential for the functioning of VdSCP126, but not VdSCP27 and VdSCP113. VdSCP27, VdSCP113, and VdSCP126 individually are not essential for V. dahliae infection of N. benthamiana and Gossypium hirsutum, although there was a significant reduction of virulence on N. benthamiana and G. hirsutum when inoculated with the VdSCP27/VdSCP126 double deletion strain. These results illustrate that the SCPs play a critical role in the V. dahliae–plant interaction via an intrinsic virulence function and suppress immunity following infection.  相似文献   

13.
14.
15.
The ribosomal protein L13a was recently found to play a role not only in protein synthesis, but also in modulating translation. We reported in previous study that L13a was responsive to Verticillium dahliae (V. dahliae) infection in a highly resistant eggplant species (Solanum torvum, SW). To elucidate the possible role of L13a in V. dahliae infection, we cloned and characterized its cDNA (designated StoL13a) in this study. StoL13a encodes a protein of 23.46 kDa and shows a high similarity to the L13a from other plants. Phylogenetic analysis revealed that StoL13a clearly grouped with L13a-like sequences. Expression level of StoL13a altered in response to V. dahliae infection and phytohormone treatment. We expressed StoL13a in V. dahliae sensitive potato, and found that the transgenic potato plants were more resistant to V. dahliae infection than the control plants with disease index of 15–25.2. The transgenic plants showed a lower quantity of reactive oxygen species and attenuated oxidative injury. Also, six defense and antioxidant enzyme genes were up-regulated in the StoL13a ectopic expression plants. These results suggest that the StoL13a plays a role in plant defense to V. dahliae infection.  相似文献   

16.
17.
Verticillium dahliae is a soil-borne phytopathogenic fungus that causes vascular wilt diseases in a wide variety of crop plants, resulting in extensive economic losses. In the past 5 years, progress has been made in elaborating the interaction between this hemibiotrophic fungus and its host plants. Some genes responsible for the vegetative growth and/or pathogenicity in V. dahliae have been identified. Plants have accrued a series of defense mechanisms, including inducible defense signaling pathways and some resistant genes to combat V. dahliae infection. Here, we have reviewed the progress in V. dahliae–plant interaction research.  相似文献   

18.
19.
Several studies have revealed that actin depolymerizing factors (ADFs) participate in plant defence responses; however, the functional mechanisms appear intricate and need further exploration. In this study, we identified an ADF6 gene in upland cotton (designated as GhADF6) that is evidently involved in cotton's response to the fungal pathogen Verticillium dahliae. GhADF6 binds to actin filaments and possesses actin severing and depolymerizing activities in vitro and in vivo. When cotton root (the site of the fungus invasion) was inoculated with the pathogen, the expression of GhADF6 was markedly down-regulated in the epidermal cells. By virus-induced gene silencing analysis, the down-regulation of GhADF6 expression rendered the cotton plants tolerant to V. dahliae infection. Accordingly, the abundance of actin filaments and bundles in the root cells was significantly higher than that in the control plant, which phenocopied that of the V. dahliae-challenged wild-type cotton plant. Altogether, our results provide evidence that an increase in filament actin (F-actin) abundance as well as dynamic actin remodelling are required for plant defence against the invading pathogen, which are likely to be fulfilled by the coordinated expressional regulation of the actin-binding proteins, including ADF.  相似文献   

20.
Chitin‐binding lysin motif (LysM) effectors contribute to the virulence of various plant‐pathogenic fungi that are causal agents of foliar diseases. Here, we report the LysM effectors of the soil‐borne fungal vascular wilt pathogen Verticillium dahliae. Comparative genomics revealed three core LysM effectors that are conserved in a collection of V. dahliae strains. Remarkably, and in contrast with the previously studied LysM effectors of other plant pathogens, no expression of core LysM effectors was monitored in planta in a taxonomically diverse panel of host plants. Moreover, targeted deletion of the individual LysM effector genes in V. dahliae strain JR2 did not compromise virulence in infections on Arabidopsis, tomato or Nicotiana benthamiana. Interestingly, an additional lineage‐specific LysM effector is encoded in the genome of V. dahliae strain VdLs17, but not in any other V. dahliae strain sequenced to date. Remarkably, this lineage‐specific effector is expressed in planta and contributes to the virulence of V. dahliae strain VdLs17 on tomato, but not on Arabidopsis or N. benthamiana. Functional analysis revealed that this LysM effector binds chitin, is able to suppress chitin‐induced immune responses and protects fungal hyphae against hydrolysis by plant hydrolytic enzymes. Thus, in contrast with the core LysM effectors of V. dahliae, this lineage‐specific LysM effector of strain VdLs17 contributes to virulence in planta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号