首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate dehydrogenase (GDH) tends to have a lower affinity for ammonium than glutamine synthetase (GS) in higher plants. Consequently, nitrogen is mostly assimilated as ammonium by the GS/glutamate synthase pathway which requires 2-oxoglutarate (2-OG) as carbon skeletons. In contrast, the NADP(H)-dependent GDH in fungi has a higher affinity for ammonium than that in higher plants and plays a more significant part in ammonium assimilation. We isolated an NADP(H)-GDH gene (PcGDH) from the fungus Pleurotus cystidiosus and heterologously expressed it in rice (Oryza sativa L.). Alterations in nitrogen assimilation, growth, metabolism, and grain yield were observed in the transgenic plants. An investigation of the kinetic properties of the purified recombinant protein demonstrated that the amination activity (7.05 ± 0.78 μmoL min?1 mg soluble protein?1) of PcGDH was higher than the deamination activity (3.36 ± 0.42 μmoL min?1 mg soluble protein?1) and that the K m value for ammonium (K m = 3.73 ± 0.23 mM) was lower than that for the glutamate (K m = 15.97 ± 0.31 mM), indicating that the PcGDH tends to interconvert 2-OG and glutamate. Examination of the activity of NADP(H)-GDH in control and transgenic lines demonstrated that NADP(H)-GDH activity in the transgenic lines was markedly higher than that in the control lines; in particular, the amination activity was significantly higher than the deamination activity in shoots of the transgenic lines. The results of the hydroponics experiment revealed that shoot and root length, fresh weight, chlorophyll content, nitrogen content, and amino acid levels (glutamate, glutamine, and total amino acids) were elevated in transgenic lines in comparison with those of the control line under different nitrogen conditions at seedling stage. The 1,000-grain weight and the panicle number in transgenic lines were considerably augmented in the field condition, yet the filled grain rate dropped slightly and there was no apparent change in the grain yield. The levels of glutelin and prolamine in the transgenic seeds were considerably higher than those in control seeds. In conclusion, these results demonstrate that heterologous expression of P. cystidiosus GDH (PcGDH) could improve nitrogen assimilation and growth in rice.  相似文献   

2.
Two putative glutamate dehydrogenase (GDH) genes (pcal_1031 and pcal_1606) were found in a sulfur-dependent hyperthermophilic archaeon, Pyrobaculum calidifontis. The two genes were then expressed in Escherichia coli, and both of the recombinant gene products showed GDH activity. The two enzymes were then purified to homogeneity and characterized in detail. Although both purified GDHs had a hexameric structure and neither exhibited allosteric regulation, they showed different coenzyme specificities: one was specific for NAD+, the other for NADP+ and different heat activation mechanisms. In addition, there was little difference in the kinetic constants, optimal temperature, thermal stability, optimal pH and pH stability between the two enzymes. The overall sequence identity between the two proteins was very high (81 %), but was not high in the region recognizing the 2′ position of the adenine ribose moiety, which is responsible for coenzyme specificity. This is the first report on the identification of two GDHs with different coenzyme specificities from a single hyperthermophilic archaeon and the definition of their basic in vitro properties.  相似文献   

3.
In plants, glutamine synthetase (GS) is the enzyme that is mainly responsible for the assimilation of ammonium. Conversely, in microorganisms such as bacteria and Ascomycota, NADP(H)-dependent glutamate dehydrogenase (GDH) and GS both have important roles in ammonium assimilation. Here, we report the changes in nitrogen assimilation, metabolism, growth, and grain yield of rice plants caused by an ectopic expression of NADP(H)-GDH (gdhA) from the fungus Aspergillus niger in the cytoplasm. An investigation of the kinetic properties of purified recombinant protein showed that the fungal gdhA had 5.4–10.2 times higher V max value and 15.9–43.1 times higher K m value for NH4 +, compared with corresponding values for rice cytosolic GS as reported in the literature. These results suggested that the introduction of fungal GDH into rice could modify its ammonium assimilation pathway. We therefore expressed gdhA in the cytoplasm of rice plants. NADP(H)-GDH activities in the gdhA-transgenic lines were markedly higher than those in a control line. Tracer experiments by feeding with 15NH4 + showed that the introduced gdhA, together with the endogenous GS, directly assimilated NH4 + absorbed from the roots. Furthermore, in comparison with the control line, the transgenic lines showed an increase in dry weight and nitrogen content when sufficient nitrogen was present, but did not do so under low-nitrogen conditions. Under field condition, the transgenic line examined showed a significant increase in grain yield in comparison with the control line. These results suggest that the introduction of fungal gdhA into rice plants could lead to better growth and higher grain yield by enhancing the assimilation of ammonium.  相似文献   

4.
The plant growth, nitrogen absorption, and assimilation in watermelon (Citrullus lanatus [Thunb.] Mansf.) were investigated in self-grafted and grafted seedlings using the salt-tolerant bottle gourd rootstock Chaofeng Kangshengwang (Lagenaria siceraria Standl.) exposed to 100 mM NaCl for 3 d. The biomass and NO3 uptake rate were significantly increased by rootstock while these values were remarkably decreased by salt stress. However, compared with self-grafted plants, rootstock-grafted plants showed higher salt tolerance with higher biomass and NO3 uptake rate under salt stress. Salinity induced strong accumulation of nitrate, ammonium and protein contents and a significant decrease of nitrogen content and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in leaves of self-grafted seedlings. In contrast, salt stress caused a remarkable decrease in nitrate content and the activities of GS and GOGAT, and a significant increase of ammonium, protein, and nitrogen contents and NR activity, in leaves of rootstock-grafted seedlings. Compared with that of self-grafted seedlings, the ammonium content in leaves of rootstock-grafted seedlings was much lower under salt stress. Glutamate dehydrogenase (GDH) activity was notably enhanced in leaves of rootstock-grafted seedlings, whereas it was significantly inhibited in leaves of self-grafted seedlings, under salinity stress. Three GDH isozymes were isolated by native gel electrophoresis and their expressions were greatly enhanced in leaves of rootstock-grafted seedlings than those of self-grafted seedlings under both normal and salt-stress conditions. These results indicated that the salt tolerance of rootstock-grafted seedlings might (be enhanced) owing to the higher nitrogen absorption and the higher activities of enzymes for nitrogen assimilation induced by the rootstock. Furthermore, the detoxification of ammonium by GDH when the GS/GOGAT pathway was inhibited under salt stress might play an important role in the release of salt stress in rootstock-grafted seedlings.  相似文献   

5.
In higher plants, glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GDH; EC 1.4.1.2) are the predominant enzymes in nitrogen metabolism. In this study, we cloned both the GS and GDH genes and analyzed their expression levels and variations in their activity in developing and germinating x Triticosecale (cv. Witon) kernels. The developing kernel samples were collected 3, 5, 7, 9, 13, 15, 20, 25, 30, 35, 40 and 45 days after flowering (DAF). The germinating kernel samples were collected after 8, 16, 24, 48 and 72 h of imbibition. There are two GS isoforms that are localized to different compartments: the cytosol (GS1) and the chloroplast (GS2). Five cDNAs encoding GS proteins in triticale plants were obtained using RT-PCR. We cloned the four genes encoding GS1, which we designated TsGS1-1, TsGS1-2, TsGS1-3 and TsGS1-4 and the only gene encoding GS2, which was designated TsGS2-1. We studied the changes in the enzymatic activity and the expression profiles of the GDH, GS1 and GS2 genes in both the developing and germinating seeds of triticale. Based on our results, there is likely cooperation between GDH and GS1 in the synthesis of glutamine and glutamate during the early stages of seed formation and in the scutella of kernels for up to 24 h of imbibition.  相似文献   

6.
7.
Mycelium of Agaricus bisporus strain Horst U1 was grown in batch cultures on different concentrations of ammonium, glutamate, and glucose to test the effect of these substrates on the activities of NADP-dependent glutamate dehydrogenase (NADP-GDH, EC 1.4.1.4), NAD-dependent glutamate dehydrogenase (NAD-GDH, EC 1.4.1.2.), and glutamine synthetase (GS, EC 6.3.1.2.). When grown on ammonium, the activities of NADP-GDH and GS were repressed. NAD-GDH activity was about 10 times higher than the activities of NADP-GDH and GS. At concentrations below 8 mM ammonium, NADP-GDH and GS were slightly derepressed. When glutamate was used as the nitrogen source, activities of NADP-GDH and GS were derepressed; compared with growth on ammonium, the activities of these two enzymes were about 10 times higher. Activities of GDHs showed no variation at different glutamate concentrations. Activity of GS was slightly derepressed at low glutamate concentrations. Growth of A. bisporus on both ammonium and glutamate as nitrogen sources resulted in enzyme activities comparable to growth on ammonium alone. Activities of NADP-GDH, NAD-GDH, and GS were not influenced by the concentration of glucose in the medium. In mycelium starved for nitrogen, the activities of NADP-GDH, NAD-GDH, and GS were derepressed, while in carbon-starved mycelium the activity of GS and both GDHs was repressed.  相似文献   

8.
The hyperthermophilic bacterium Thermotoga maritima, which grows at up to 90°C, contains an L-glutamate dehydrogenase (GDH). Activity of this enzyme could be detected in T. maritima crude extracts, and appeared to be associated with a 47-kDa protein which cross-reacted with antibodies against purified GDH from the hyperthermophilic archaeon Pyrococcus woesei. The single-copy T. maritima gdh gene was cloned by complementation in a glutamate auxotrophic Escherichia coli strain. The nucleotide sequence of the gdh gene predicts a 416-residue protein with a calculated molecular weight of 45852. The gdh gene was inserted in an expression vector and expressed in E. coli as an active enzyme. The T. maritima GDH was purified to homogeneity. The NH2-terminal sequence of the purified enzyme was PEKSLYEMAVEQ, which is identical to positions 2–13 of the peptide sequence derived from the gdh gene. The purified native enzyme has a size of 265 kDa and a subunit size of 47 kDa, indicating that GDH is a homohexamer. Maximum activity of the enzyme was measured at 75°C and the pH optima are 8.3 and 8.8 for the anabolic and catabolic reaction, respectively. The enzyme was found to be very stable at 80°C, but appeared to lose activity quickly at higher temperatures. The T. maritima GDH shows the highest rate of activity with NADH (V max of 172U/mg protein), but also utilizes NADPH (V max of 12U/mg protein). Sequence comparisons showed that the T. maritima GDH is a member of the family II of hexameric GDHs which includes all the GDHs isolated so far from hyperthermophiles. Remarkably, phylogenetic analysis positions all these hyperthermophilic GDHs in the middle of the GDH family II tree, with the bacterial T. maritima GDH located between that of halophilic and thermophilic euryarchaeota. Received: 15 July 1996 / Accepted: 12 October 1996  相似文献   

9.

Objective

To study the effect of Ca2+ on glutamate dehydrogenase (GDH) and its role in poly-γ-glutamic acid (γ-PGA) synthesis in Bacillus natto HSF 1410.

Results

When the concentration of Ca2+ varied from 0 to 0.1 g/l in the growth medium of B. natto HSF 1410, γ-PGA production increased from 6.8 to 9.7 g/l, while GDH specific activity and NH4Cl consumption improved from 183 to 295 U/mg and from 0.65 to 0.77 g/l, respectively. GDH with α-ketoglutarate as substrate primarily used NADPH as coenzyme with a K m of 0.08 mM. GDH was responsible for the synthesis of endogenous glutamate. The specific activity of GDH remained essentially unchanged in the presence of CaCl2 (0.05–0.2 g/l) in vitro. However, the specific activity of GDH and its expression was significantly increased by CaCl2 in vivo. Therefore, the regulation of GDH and PGA synthesis by Ca2+ is an intracellular process.

Conclusion

Calcium regulation may be an effective approach for producing γ-PGA on an industrial scale.
  相似文献   

10.
On the cross-roads of main carbon and nitrogen metabolic pathways, glutamate dehydrogenase (GDH, E.C. 1.4.1.2) carries out the reaction of reductive amination of 2-oxoglutarate to glutamate (the anabolic activity; NAD(P)H–GDH), and the reverse reaction of oxidative deamination of glutamic acid (the catabolic activity; NAD(P)+–GDH). To date, there have been no reports on identification of GDH genes in cereals. Here, we report cloning and biochemical characterization of the GDH from germinating triticale seeds, a common Polish cereal. A single TsGDH1 gene is 1,620 bp long, while its 1,236 bp long open reading frame encodes a protein of 411 amino acids of high homology with the published GDH protein sequences from other plants. Phylogenetic analyses locate the TsGDH1 among other monocotyledonous proteins and among the sequences of the β-type subunit of plant GDHs. Changes in TsGDH1 expression and the dynamics of enzyme activity in germinating seeds confirm the existence of one TsGDH isoform with varying expression and activity patterns, depending on the tissue localization and stage of germination. The four-step purification method (including the anionite chromatography using HPLC) resulted in a protein preparation with a high-specific activity and purification factor of approx. 230. The purified enzyme exhibited an absolute specificity towards 2-oxoglutarate (NAD(P)H–GDH), or towards l-glutamate in the reverse reaction (NAD(P)+–GDH), while its low K m constants towards all substrates and co-enzymes may suggest its aminating activity during germination, or, alternatively, its capability to adjust the direction of the catalyzed reaction according to the metabolic necessity.  相似文献   

11.
In higher plants it is now generally considered that glutamate dehydrogenase (GDH) plays only a small or negligible role in ammonia assimilation. To test this specific point, comparative studies of 15NH4+ assimilation were undertaken with a GDH1-null mutant of Zea mays and a related (but not strictly isogenic) GDH1-positive wild type from which this mutant was derived. The kinetics of 15NH4+ assimilation into free amino acids and total reduced nitrogen were monitored in both roots and shoots of 2-week-old seedlings supplied with 5 millimolar 99% (15NH4)2SO4 via the aerated root medium in hydroponic culture over a 24-h period. The GDH1-null mutant, with a 10- to 15-fold lower total root GDH activity in comparison to the wild type, was found to exhibit a 40 to 50% lower rate of 15NH4+ assimilation into total reduced nitrogen. Observed rates of root ammonium assimilation were 5.9 and 3.1 micromoles per hour per gram fresh weight for the wild type and mutant, respectively. The lower rate of 15NH4+ assimilation in the mutant was associated with lower rates of labeling of several free amino acids (including glutamate, glutamine-amino N, aspartate, asparagine-amino N, and alanine) in both roots and shoots of the mutant in comparison to the wild type. Qualitatively, these labeling kinetics appear consistent with a reduced flux of 15N via glutamate in the GDH1-null mutant. However, the responses of the two genotypes to the potent inhibitor of glutamine synthetase, methionine sulfoximine, and differences in morphology of the two genotypes (particularly a lower shoot:root ratio in the GDH1-null mutant) urge caution in concluding that GDH1 is solely responsible for these differences in ammonia assimilation rate.  相似文献   

12.
Both calli and plantlets of maize (Zea mays L. var Tuxpeño 1) were exposed to specific nitrogen sources, and the aminative (NADH) and deaminative (NAD+) glutamate dehydrogenase activities were measured at various periods of time in homogenates of calli, roots, and leaves. A differential effect of the nitrogen sources on the tissues tested was observed. In callus tissue, glutamate, ammonium, and urea inhibited glutamate dehydrogenase (GDH) activity. The amination and deamination reactions also showed different ratios of activity under different nitrogen sources. In roots, ammonium and glutamine produced an increase in GDH-NADH activity whereas the same metabolites were inhibitory of this activity in leaves. These data suggest the presence of isoenzymes or conformers of GDH, specific for each tissue, whose activities vary depending on the nutritional requirements of the tissue and the state of differentiation.  相似文献   

13.
Glutamate dehydrogenase (GDH) specific activity and function have been studied in cell suspension cultures of carrot (Daucus carota L. cv Chantenay) in response to carbon and nitrogen supply in the culture medium. The specific activity of GDH was derepressed in sucrose-starved cells concomitant with protein catabolism, ammonium excretion, and the accumulation of metabolically active amino acids. The addition of sucrose led to a rapid decrease in GDH specific activity, an uptake of ammonium from the medium, and a decrease in amino acid levels. The extent of GDH derepression was correlated positively with cellular glutamate concentration. These findings strengthen the view that the function of GDH is the catabolism of glutamate, which under conditions of carbon stress provides carbon skeletons for tricarboxylic acid cycle activity.  相似文献   

14.
The growth yields of three strains of Rhizobium japonicum (CB 1809, CC 723, CC 705) in culture solutions containing L-glutamate were about twice those grown with ammonium. The activities of glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GDH; EC 1.4.1.4) were dependent on the nitrogen source in the medium and also varied with growth. Both NADPH-and NADH-dependent glutamate synthase (GOGAT; EC 1.4.1.13) and NADPH-dependent GDH were found in strains grown with either glutamate or ammonium but NADH-linked GDH was only detected in glutamate-grown cells. Glutamine synthetase was adenylylated in cells grown with NH 4 + (90%) and to lesser extent in those grown with L-glutamate (50%). In root nodules produced by the three strains in Glycine max (L.) Merr., the bulk of GS was located in the nodule cytosol (60–85%). The enzyme was adenylylated in bacteroids (43–75%) and in the nodule tissues (52–68%). The enzyme in cell-free extracts of Rh. japonicum (CC 705) grown in culture solutions containing glutamate and in bacteroids (CC 705) was deadenylylated by snake-venom phosphodiesterase. L-methionine-DL-sulfoximine restricted the incoporation of 15N-labelled (NH4)2SO4 into cells of strains CB 1809 and CC 705, as well as in bacteroids of strain CC 705. It is noteworthy that appreciable activities for GDH were found in the free-living rhizobia grown on glutamate. Thus the presence of an enzyme does not necessarily imply that a particular pathway is operative in assimilating ammonium into cell nitrogen. Based on 15N studies, the GS-GOGAT pathway of rhizobia (strains CB 1809 and CC 705) is important when grown in culture solutions as well as in bacteroids from root nodules of G. max.  相似文献   

15.
Spinach (Spinacea oleracea L. “Correnta F1”) and pea (Pisum sativum L. “Macrocarpon”) plants were grown in a hydroponic culture with nitrate (5 mM), or ammonium (5 mM) as the nitrogen source. Dry matter accumulation declined dramatically in spinach plants fed with ammonium, whereas there was no change in pea plants when compared with nitrate-fed plants. Data obtained from δ15N, the organic nitrogen content, N-assimilation enzyme activity, glutamine synthetase (L-glutamate:ammonia-ligase; EC 6.3.1.2), glutamate dehydrogenase (L-glutamate:NAD+-oxidoreductase; EC 1.4.1.2) and enzymes from the tricarboxylic acid cycle suggest that ammonium incorporation into organic nitrogen is localized in the roots in pea plants and in the shoots in spinach plants. Distribution of incorporated ammonium (in shoots and roots) may determine ammonium tolerance. Our results show that unlike in spinach plants, in pea plants, an ammonium-tolerant species, GDH enzyme plays an important role in ammonium detoxification by its incorporation into amino acids. Furthermore, phosphoenolpyruvate carboxylase (phosphate:oxaloacetate-carboxy-lyase; EC 4.1.1.31) and pyruvate kinase (ATP:pyruvate-2-O-phosphotransferase; EC 2.7.1.40) activities reflect a major flow of carbon for ammonium assimilation through oxalacetate in pea plants and through pyruvate in spinach plants. The differences in the sensitivity to ammonium between the species are discussed in terms of differences in the site of ammonium assimilation as well as in the nitrogen assimilation ways.  相似文献   

16.
The leaf is considered the most important vegetative organ of tank epiphytic bromeliads due to its ability to absorb and assimilate nutrients. However, little is known about the physiological characteristics of nutrient uptake and assimilation. In order to better understand the mechanisms utilized by some tank epiphytic bromeliads to optimize the nitrogen acquisition and assimilation, a study was proposed to verify the existence of a differential capacity to assimilate nitrogen in different leaf portions. The experiments were conducted using young plants of Vriesea gigantea. A nutrient solution containing NO3/NH4+ or urea as the sole nitrogen source was supplied to the tank of these plants and the activities of urease, nitrate reductase (NR), glutamine synthetase (GS) and glutamate dehydrogenase (NADH-GDH) were quantified in apical and basal leaf portions after 1, 3, 6, 9, 12, 24 and 48 h. The endogenous ammonium and urea contents were also analyzed. Independent of the nitrogen sources utilized, NR and urease activities were higher in the basal portions of leaves in all the period analyzed. On the contrary, GS and GDH activities were higher in apical part. It was also observed that the endogenous ammonium and urea had the highest contents detected in the basal region. These results suggest that the basal portion was preferentially involved in nitrate reduction and urea hydrolysis, while the apical region could be the main area responsible for ammonium assimilation through the action of GS and GDH activities. Moreover, it was possible to infer that ammonium may be transported from the base, to the apex of the leaves. In conclusion, it was suggested that a spatial and functional division in nitrogen absorption and NH4+ assimilation between basal and apical leaf areas exists, ensuring that the majority of nitrogen available inside the tank is quickly used by bromeliad's leaves.  相似文献   

17.
The presence of glutamate synthase (GOGAT) in rice root extractsand the relationship among electron donors, nitrogen donorsand its activity were studied using 15N-amido-labelled glutamine,asparagine, 14C-2-oxoglutarate and inhibitors The high molecular fraction of rice root extracts prepared bySephadex G-50 column showed ferredoxin-dependent GOGAT activity,but pyridine nucleotide dependent activity could not be detectedin it. Asparagine did not act as a nitrogen donor for rice rootGOGAT. Methyl viologen could be a substitute for ferredoxin,but GOGAT activity with it was about 1/4 of that with ferredoxin.Accordingly, rice root GOGAT was considered to be the same typeas that observed in leaves of many higher plants, but differentfrom that discovered in pea roots and cultured carrot tissues. The extracts showed high GDH activity, which was reduced bythe addition of glutamine. The GDH did not act with glutamineand asparaginc in the presence of aminooxy-acetate and did notshow GOGAT-like activity. (Received December 19, 1977; )  相似文献   

18.
This study examines the transport of 2-oxoglutarate (2-OG) and other dicarboxylates during ammonia assimilation in illuminated spinach chloroplasts. The transport of all dicarboxylates examined was strongly inhibited by NH4Cl preincubation in the light. Treatment with NH4Cl caused a rapid depletion of the endogenous glutamate pool and a corresponding increase in endogenous glutamine content. The inhibition of transport activity by NH4Cl was apparently linked to its metabolism in the light because inhibition of glutamine synthetase activity by the addition of l-methionine sulfoximine or carbonylcyanide-m-chlorophenylhydrazone abolished this affect. Measurements of endogenous metabolite pools showed that malate was most rapidly exchanged during the uptake of all exogenous dicarboxylates examined. Depending on the exogenous substrates used, the apparent half-times of efflux measured for endogenous malate, aspartate and glutamate were 10, 10 to 30, and 15 to 240 seconds, respectively. The transport of 2-OG was also inhibited by malate. But chloroplasts preincubated with malate in the presence or absence of NH4Cl were found to have high transport activity similar to untreated chloroplasts. A two-translocator model is proposed to explain the stimulation of 2-OG transport as well as the stimulation of (NH3, 2-OG)-dependent O2 evolution by malate (KC Woo, CB Osmond 1982 Plant Physiol 69: 591-596) in isolated chloroplasts. In this model the transport of 2-OG on the 2-OG translocator and glutamate on the dicarboxylate translocator is coupled to malate counter-exchange in a cascade-like manner. This results in a net 2-OG/glutamate exchange with no net malate transport. Thus, during NH3 assimilation the transport of 2-OG into and the export of glutamate out of the chloroplast occurs via the 2-OG and the dicarboxylate translocators, respectively.  相似文献   

19.
It is well established that the plastidic isoform of glutamine synthetase (GS2) is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4+ accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4+ when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1), glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) was observed in the mutant in correspondence with the diminishment of NH4+. Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4+ when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H)-dependent GDH activity.  相似文献   

20.
Biochemical and physiological parameters associated with nitrogen metabolism were measured in nodules and roots of glasshouse-grown clones of two symbiotically ineffective alfalfa (Medicago sativa L.) genotypes supplied with either NO3 or NH4+. Significant differences were observed between genotypes for nodule soluble protein concentrations and glutamine synthetase (GS) and glutamate synthase (GOGAT) specific activities, both in untreated controls and in response to applied N. Nodule soluble protein of both genotypes declined in response to applied N, while nodule GS, GOGAT, and glutamate dehydrogenase (GDH) specific activities either decreased or remained relatively constant. In contrast, no genotype differences were observed in roots for soluble protein concentrations and GS, GOGAT, and GDH specific activities, either in untreated controls or in response to applied N. Root soluble protein levels and GS and GOGAT specific activities of N-treated plants increased 2- to 4-fold within 4 days and then decreased between days 13 and 24. Root GDH specific activity of NH4+-treated plants increased steadily throughout the experiment and was 50 times greater than root GS or GOGAT specific activities by day 24.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号