首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postweaning mass gain in juvenile alpine marmots Marmota marmota   总被引:3,自引:0,他引:3  
The effects of several environmental factors on the postweaning growth of wild Alpine marmots were investigated. Factors considered were year of birth, sun exposure in the home range, litter size, and sex of young. Components of growth were juvenile mass at emergence from the natal burrow (as a result of preweaning growth) and postweaning growth rate. We also considered the length of the active season during which growth occurs. Mass at emergence and postweaning growth rate varied according to year of birth, were higher in south-facing than in north-facing home ranges, and were higher in small litters. Mass at emergence was higher for males than for females. We suggest that environmental factors affected the juvenile growth pattern through influences on maternal body condition. Our results support Trombulak's hypothesis that mothers maintain as many young as physiologically possible. We suggest that mothers in poor condition sacrificed the mass of their offspring rather than their number. A body mass sexual dimorphism of juveniles occurred at emergence, suggesting that mothers may provide more care for their male than their female offspring. Received: 9 June 1997 / Accepted: 22 September 1997  相似文献   

2.
Maternal effects can have lasting fitness consequences for offspring, but these effects are often difficult to disentangle from associated responses in offspring traits. We studied persistent maternal effects on offspring survival in North American red squirrels (Tamiasciurus hudsonicus) by manipulating maternal nutrition without altering the post-emergent nutritional environment experienced by offspring. This was accomplished by providing supplemental food to reproductive females over winter and during reproduction, but removing the supplemental food from the system prior to juvenile emergence. We then monitored juvenile dispersal, settlement and survival from birth to 1 year of age. Juveniles from supplemented mothers experienced persistent and magnifying survival advantages over juveniles from control mothers long after supplemental food was removed. These maternal effects on survival persisted, despite no observable effect on traits normally associated with high offspring quality, such as body size, dispersal distance or territory quality. However, supplemented mothers did provide their juveniles an early start by breeding an average of 18 days earlier than control mothers, which may explain the persistent survival advantages their juveniles experienced.  相似文献   

3.
James F. Rieger 《Oecologia》1996,107(4):463-468
The timing of reproduction affected litter size, offspring mass, and offspring survival in the Uinta ground squirrel, Spermophilus armatus, in Grand Teton National Park, Wyoming. Survival of juvenile females to yearling age varied negatively with date of weaning and positively with individual offspring mass. At the same time, juveniles weaned early in the season were lighter, and juveniles weaned later in the season were heavier. The coefficient of variation for juvenile body mass, originally measured at weaning, significantly decreased by the time juveniles entered hibernation, indicating that individuals weaned early and light caught up in body mass to individuals weaned later and heavier. From the perspective of the mother's investment in the litter, litter size (corrected for mother's mass) decreased with later wcaning dates, while the relationship of weaning date to litter mass (corrected for mother's mass) was significant in only one year. Maternal allocation of resources in litters changed over the season so that mothers produced many, small offspring early in the season, and fewer, large offspring late in the season.  相似文献   

4.
Explaining the seasonal decline in litter size in European ground squirrels   总被引:1,自引:0,他引:1  
In European ground squirrels Spermophilus citellus as in many ground squirrel species. late born litters are composed of fewer young than early born litters. Two alternative though not mutually exclusive hypotheses may explain this seasonal pattern of change in litter size. On the one hand. the production of few large young late in the season may be an adaptation to time limitations on the offspring. that have to complete growth and fattening prior to hibernation. Then one would expect a trade-off between offspring number and size as the breeding season progresses. At its extreme. this hypothesis would predict that total maternal effort should be equal independent of litter size. Alternatively. litter size may be determined by physiological limitations on the mother. in that highly constrained mothers breed later and produce smaller litters. Then one would expect reduced overall maternal effort in highly constrained mothers of smaller litters. In this case. a trade-off between litter size and offspring size would not be expected. We found that total maternal effort in terms of gestation length and the duration of lactation increased with increasing litter size. thus supporting the second hypothesis. Lactation was not terminated at natal emergence. It extended a relatively long period of time beyond the time of first litter emergence depending on litter size. During prolonged lactation. individual young of large litters made up body mass to young of small litters. As a consequence. juvenile weaning body mass was unaffected by litter size although offspring body mass at natal emergence was inversely related to litter size. This additional weight gain in young of large litters compensated for initial survival disadvantages and presumably affected fecundity at yearling age.  相似文献   

5.
Torpor is thought to slow age-related processes and to sustain growth and fattening of young individuals. Energy allocation into these processes represents a challenge for juveniles, especially for those born late in the season. We tested the hypothesis that late-born juvenile garden dormice (Eliomys quercinus) fed ad libitum (‘AL’, n = 9) or intermittently fasted (‘IF’, n = 9) use short torpor bouts to enhance growth and fat accumulation to survive winter. IF juveniles displayed more frequent and longer torpor bouts, compared with AL individuals before hibernation. Torpor frequency correlated negatively with energy expenditure and water turnover. Hence, IF juveniles gained mass at the same rate, reached similar pre-hibernation fattening and displayed identical hibernating patterns and mass losses as AL animals. We found no group differences in relative telomere length (RTL), an indicator of ageing, during the period of highest summer mass gain, despite greater torpor use by IF juveniles. Percentage change in RTL was negatively associated with mean and total euthermic durations among all individuals during hibernation. We conclude that torpor use promotes fattening in late-born juvenile dormice prior to hibernation. Furthermore, we provided the first evidence for a functional link between time spent in euthermy and ageing processes over winter.  相似文献   

6.
The timing of birth is often correlated with offspring fitness in animals, but experimental studies that disentangle direct effects of parturition date and indirect effects mediated via variation in female traits are rare. In viviparous ectotherms, parturition date is largely driven by female thermal conditions, particularly maternal basking strategies. Our field and laboratory studies of a viviparous lizard (Niveoscincus ocellatus) show that earlier‐born offspring are more likely to survive through their first winter and are larger following that winter, than are later‐born conspecifics. Thus, the association between parturition date and offspring fitness is causal, rather than reflecting an underlying correlation between parturition date and maternal attributes. Survival selection on offspring confers a significant advantage for increased maternal basking in this species, mediated through fitness advantages of earlier parturition. We discuss the roles of environmentally imposed constraints and parent–offspring conflict in the evolution of maternal effects on parturition date.  相似文献   

7.
In temperate environments, early-born ungulates may enjoy a longer growth period before winter, and so attain a higher body mass and an increased probability of survival compared to late-born ones. We assessed the effects of maternal characteristics, forage quality and population density on kid birthdate, mass and survival in a population of marked mountain goats (Oreamnos americanus) in Alberta. The duration and timing of the birth season were similar in all years. Births were highly synchronised: 80% of kids were born within 2 weeks of the first birth. Maternal age, maternal social rank and density did not affect kid birthdate or mass. Previous breeding experience was not related to kid birthdate, but kids born to pluriparous mothers were heavier during summer than kids born to primiparous mothers. Male and female kids had similar mass and accumulated mass linearly during summer. Early-born kids were heavier than late-born kids. Faecal crude protein (FCP) in late spring and maternal mass were positively related to kid mass. Survival to weaning appeared higher for males (90%) than for females (78%), but survival to 1 year was 65% for both sexes. FCP in late spring, density, birthdate and mass did not affect kid survival to weaning in either sex. Survival to 1 year increased with FCP in late spring for females, but not for males. Survival to 1 year was independent of birthdate for both sexes, but heavy females survived better than light ones. Multiple logistic regression revealed a positive effect of mass on survival to 1 year when the sexes were pooled. Our results suggest that mountain goats are constrained to give birth in a short birth season synchronised with forage productivity.  相似文献   

8.
Early survival is highly variable and strongly influences observed population growth rates in most vertebrate populations. One of the major potential drivers of survival variation among juveniles is body mass. Heavy juveniles are better fed and have greater body reserves, and are thus assumed to survive better than light individuals. In spite of this, some studies have failed to detect an influence of body mass on offspring survival, questioning whether offspring body mass does indeed consistently influence juvenile survival, or whether this occurs in particular species/environments. Furthermore, the causes for variation in offspring mass are poorly understood, although maternal mass has often been reported to play a crucial role. To understand why offspring differ in body mass, and how this influences juvenile survival, we performed phylogenetically corrected meta‐analyses of both the relationship between offspring body mass and offspring survival in birds and mammals and the relationship between maternal mass and offspring mass in mammals. We found strong support for an overall positive effect of offspring body mass on survival, with a more pronounced influence in mammals than in birds. An increase of one standard deviation of body mass increased the odds of offspring survival by 71% in mammals and by 44% in birds. A cost of being too fat in birds in terms of flight performance might explain why body mass is a less reliable predictor of offspring survival in birds. We then looked for moderators explaining the among‐study differences reported in the intensity of this relationship. Surprisingly, sex did not influence the intensity of the offspring mass–survival relationship and phylogeny only accounted for a small proportion of observed variation in the intensity of that relationship. Among the potential factors that might affect the relationship between mass and survival in juveniles, only environmental conditions was influential in mammals. Offspring survival was most strongly influenced by body mass in captive populations and wild populations in the absence of predation. We also found support for the expected positive effect of maternal mass on offspring mass in mammals (rpearson = 0.387). As body mass is a strong predictor of early survival, we expected heavier mothers to allocate more to their offspring, leading them to be heavier and so to have a higher survival. However, none of the potential factors we tested for variation in the maternal mass–offspring mass relationship had a detectable influence. Further studies should focus on linking these two relationships to determine whether a strong effect of offspring size on early survival is associated with a high correlation coefficient between maternal mass and offspring mass.  相似文献   

9.
Variability in juvenile survival rate is expected to be an important component of the dynamics of long-lived animal populations. Across a range of species, individual variation in juvenile body mass has been shown to be an important cause of variation in fates of juveniles. Our goal in this paper was to estimate age-specific apparent survival rates for Weddell seals ( Leptonychotes weddellii ) in Erebus Bay, Antarctica, and to investigate hypotheses about relationships between body mass at weaning and apparent survival rate for juveniles. Mark–resighting models found average apparent juvenile survival rate (survival from weaning to age 3) was similar between males and females, and revealed positive relationships between body mass at weaning and apparent juvenile survival rate. The effects of body mass on juvenile survival rate differed between the sexes and the relationship between body mass and survival rate was stronger in males. These results indicate that the magnitude of energy transferred from mother to pup during lactation likely has important consequences on offspring survival rate and maternal fitness.  相似文献   

10.
Maternal effects can have significant and long-term consequences on offspring behavior and survival, while consistent individual differences (i.e., personality) can have profound impacts on individual fitness. Thus, both can influence population dynamics. However, the underlying mechanisms that determine variation in personality traits are poorly understood. Maternal effects are one potential mechanism that may explain personality variation. We capitalized on a long-term study of yellow-bellied marmots (Marmota flaviventris) to identify maternal effects on juvenile docility. To do so, we partitioned the variance in juvenile docility using a quantitative genetic modeling approach to isolate potential maternal effects. We also directly tested whether maternal stress, measured through fecal glucocorticoid metabolite levels during lactation of 82 mothers, was associated with offspring docility. Docility scores were estimated for 645 juveniles trapped between 2002 and 2012. We found an interaction between maternal glucocorticoid levels and dam age on juvenile docility. We also found significant maternal, litter, permanent environment, and year effects. These results suggest that a mother's life history stage interacts with stress to influence offspring personality. This early life influence can have long lasting effects on an individual's docility throughout life.  相似文献   

11.
Variation in timing of reproduction and subsequent juvenile survival often plays an important role in population dynamics of temperate and boreal ungulates. Tropical ungulates often give birth year round, but survival effects of birth season for tropical ungulate species are unknown. We used a population of giraffe in the Tarangire Ecosystem of northern Tanzania, East Africa to determine whether calf survival varied by season of birth. Variation in juvenile survival according to season of birth was significant, with calves born during the dry season experiencing the highest survival probability. Phenological match may confer a juvenile survival advantage to offspring born during the dry season from greater accumulated maternal energy reserves in mothers who conceive in the long rainy season, high-protein browse in the late dry-early short rainy seasons supplementing maternal and calf resources, reduced predation due to decreased stalking cover, or some combination of these. Asynchrony is believed to be the ancestral state of all ungulates, and this investigation has illustrated how seasonal variation in vegetation can affect juvenile survival and may play a role in the evolution of synchronous births.  相似文献   

12.
The duration of offspring care is critical to female fitness and population resilience by allowing flexibility in life‐history strategies in a variable environment. Yet, for many mammals capable of extended periods of maternal care, estimates of the duration of offspring dependency are not available and the relative importance of flexibility of this trait on fitness and population viability has rarely been examined. We used data from 4,447 Steller sea lions Eumetopias jubatus from the Gulf of Alaska and multistate hidden Markov mark–recapture models to estimate age‐specific weaning probabilities. Maternal care beyond age 1 was common: Weaning was later for animals from Southeast Alaska (SEAK) and Prince William Sound (PWS, weaning probabilities: 0.536–0.648/0.784–0.873 by age 1/2) compared with animals born to the west (0.714–0.855/0.798–0.938). SEAK/PWS animals were also smaller than those born farther west, suggesting a possible link. Females weaned slightly earlier (+0.080 at age 1 and 2) compared with males in SEAK only. Poor survival for weaned versus unweaned yearlings occurred in southern SEAK (female survival probabilities: 0.609 vs. 0.792) and the central Gulf (0.667 vs. 0.901), suggesting poor conditions for juveniles in these areas. First‐year survival increased with neonatal body mass (NBM) linearly in the Gulf and nonlinearly in SEAK. The probability of weaning at age 1 increased linearly with NBM for SEAK animals only. Rookeries where juveniles weaned at earlier ages had lower adult female survival, but age at weaning was unrelated to population trends. Our results suggest the time to weaning may be optimized for different habitats based on long‐term average conditions (e.g., prey dynamics), that may also shape body size, with limited short‐term plasticity. An apparent trade‐off of adult survival in favor of juvenile survival and large offspring size in the endangered Gulf of Alaska population requires further study.  相似文献   

13.
We found in an earlier study that mosquitofish (Gambusia affinis and G. holbrooki) ceased reproduction in the late summer, long before the end of warm weather, stored fat, then utilized reserves to survive the winter and initiate reproduction the following spring. We hypothesized that this pattern of fat utilization was a life history adaptation that enabled the fish to acquire food resources in the autumn then allocate them to reproduction the following spring when the fitness of the young would be greater. Here we evaluate one aspect of this hypothesis by evaluating the probability of survival to maturity and fecundity of young as a function of date of birth. We placed cohorts comprising eight to ten litters of young born early‐, mid‐ or late in the reproductive season in replicate field enclosures. The entire experiment was repeated in two different years. Early‐born young had a significantly higher probability of survival to maturity but did not differ in fecundity relative to the last cohort of the season. Early‐born young also attained maturity early enough to reproduce in their year of birth while late‐born young had to overwinter before reproduction. The fitness consequences to the mother of either producing one more litter of young at the end of the season, versus instead storing fat and reproducing the following spring are not as determinate as are the effects of date of birth on offspring fitness. Females most often gain fitness by not producing one last litter and instead over‐wintering. If, however, the overwinter survival of offspring is not influenced by their size at the end of the season, then a female's fitness could be enhanced by producing one more litter late in the season. If instead the probability of overwinter survival is strongly influenced by the size of offspring at the end of the season, then our results suggest that a female gains more by deferring reproduction and storing for overwinter survival and reproduction the following spring.  相似文献   

14.
In strongly seasonal environments, the timing of birth can have important fitness consequences. We investigated which factors affect parturition date and how birthdate interacts with sex, maternal characteristics and environmental variables to affect the growth and survival of bighorn sheep (Ovis canadensis) lambs in a marked population in Alberta. Over 14 years, the estimated birthdate of 216 lambs ranged from 21 May to 18 July. Parturition date was heritable and genetically correlated with maternal mass the previous fall. Weaning a lamb delayed parturition the following year by about 7 days. Birthdate did not affect summer growth rate, but late-born lambs were lighter in mid September (the approximate time of weaning) than early-born ones. Birthdate did not affect survival to weaning, but late birth decreased survival to 1 year for male lambs. Forage quality, measured by fecal crude protein, did not affect survival to 1 year. Once we accounted for lamb mass in mid September, birthdate no longer affected the probability of survival, suggesting that late birth decreased survival by shortening a lamb's growing season. Because there was no compensatory summer growth, late-born lambs were smaller than early-born ones at the onset of winter. Our data highlight the importance of birthdate on life history traits and suggest that resource scarcity had more severe consequences for juvenile males than for females.  相似文献   

15.
In a French population of Alpine marmots (Marmota marmota),the sex ratio at weaning was biased in favor of males. Thisbias also seemed to exist at birth. Under Fisher's equal allocationprinciple, this means that daughters should be more costlyto produce than sons. Because the Alpine marmot can be considereda cooperative breeding species, we investigated whether thedifferential cost between sons and daughters may be explainedby the helper repayment hypothesis. The Alpine marmot usessocial thermoregulation during hibernation, allowing juvenilesto better survive over winter. In the study population, juvenilesurvival during winter increased with group size. More precisely,juvenile survival during winter increased with the number andwith the proportion of subordinate males in the hibernatinggroup, but juvenile survival did not depend on the number of subordinate females. As our results did not support alternativehypotheses to explain the observed bias in sex ratio amongoffspring at emergence, we conclude that the helper repaymenthypothesis is the best candidate to explain the observed offspringsex ratio bias in Alpine marmots. By participating in socialthermoregulation, subordinate males may repay part of the investment they received from their parents and thus become less costlyto produce. We suggest that only subordinate males helped becausethey may gain direct fitness benefits, whereas subordinatefemales may only expect indirect fitness benefits from helping.Finally, the offspring sex ratio per individual parent wasmale biased, but mothers adjusted the size and the sex compositionof their litters according to their phenotypic condition asexpected from the Trivers-Willard hypothesis.  相似文献   

16.
Summary Relationships between size, body condition, age and feeding-attendance patterns during pup rearing of female Antacrtic fur seals Arctocephalus gazella and their effects on the timing of birth and weaning, pup weight, growth and condition were studied at South Georgia in 1981–1982. Twenty-seven (6 male, 21 female) mother-pup pairs were followed from birth to weaning. The analysis of maternal effects was limited to female pups because of the small sample size of male weaners. High weaning weight was associated with those female pups whose mothers spent more time ashore attending their offspring. Weaning weight showed no relationship with perinatal duration, number of feeding trips to sea, days at sea or date of weaning. A further 63 mother-pup pairs were analysed for the effects of maternal body condition (weight/length), age and timing of birth on offspring body weight and condition. Pup weight and condition were weakly correlated with maternal age in female pups. Male pups born earlier in the season were heavier and in better condition. Maternal and offspring body weight and condition were unrelated. For the Antarctic fur seal population at South Georgia where the food supply was apparently not limiting in summer, maternal condition and foraging time were subordinate to maternal care on land (as expressed by attendance duration) in determining offspring weight at weaning.  相似文献   

17.
Warming of the Arctic has resulted in earlier snowmelt and green‐up of plants in spring, potentially disrupting the synchrony between plant phenology and breeding phenology in herbivores. A negative relationship between offspring survival in West Greenland caribou and the timing of vegetation emergence was the first finding of such a mismatch in Arctic mammals. However, other studies indicate that the energy for foetal growth and early lactation is predominantly drawn from stored energy reserves typical of ‘capital’ breeders, suggesting that conditions well before spring influence calf production more than the timing of spring onset. Here we use 20 years of observations of marked Svalbard reindeer to evaluate determinants of annual recruitment, as measured by the presence of a calf at foot in mid‐summer. Spring temperatures and the enhanced vegetation index were used as proxies for spring onset, while data on body mass and pregnancy rates in late winter allowed us to determine maternal condition and the reproductive status before spring. Pregnancy rate, offspring survival and annual recruitment were all strongly correlated with average late winter adult female body mass (r = 0.87; r = 0.83; r = 0.92, respectively). Contrary to the findings in West Greenland, neither early calf survival nor annual recruitment were correlated with the two measures of annual variation in spring phenology (r = – 0.07, p = 0.8 and r = – 0.15, p = 0.6, respectively). We also revisit the Greenland data and reveal that the pattern of covariance between early and late measures of fecundity, as well as between early measures of fecundity and offspring survival, correspond with the results from Svalbard. Our results emphasize that conditions affecting maternal body mass during winter explain close to all the variation in recruitment, questioning the importance of the role of a mismatch between plant phenology and calving date.  相似文献   

18.
Animal personalities are by definition stable over time, but to what extent they may change during development and in adulthood to adjust to environmental change is unclear. Animals of temperate environments have evolved physiological and behavioural adaptations to cope with the cyclic seasonal changes. This may also result in changes in personality: suites of behavioural and physiological traits that vary consistently among individuals. Winter, typically the adverse season challenging survival, may require individuals to have shy/cautious personality, whereas during summer, energetically favourable to reproduction, individuals may benefit from a bold/risk‐taking personality. To test the effects of seasonal changes in early life and in adulthood on behaviours (activity, exploration and anxiety), body mass and stress response, we manipulated the photoperiod and quality of food in two experiments to simulate the conditions of winter and summer. We used the common voles (Microtus arvalis) as they have been shown to display personality based on behavioural consistency over time and contexts. Summer‐born voles allocated to winter conditions at weaning had lower body mass, a higher corticosterone increase after stress and a less active, more cautious behavioural phenotype in adulthood compared to voles born in and allocated to summer conditions. In contrast, adult females only showed plasticity in stress‐induced corticosterone levels, which were higher in the animals that were transferred to the winter conditions than to those staying in summer conditions. These results suggest a sensitive period for season‐related behavioural plasticity in which juveniles shift over the bold–shy axis.  相似文献   

19.
We monitored individual reproductive timing and output in a common hamster population in Vienna over a 3-year period. Animals were live-trapped, weighed, individually marked, and reproductive status was determined at capture. Costs of reproduction were investigated by measuring body condition shortly before hibernation and overwinter survival. Our results indicated that early emerging females had more litters and weaned more offspring per season. Body mass throughout the active season did not differ significantly between females with high and low reproductive output. High reproductive output seemed to affect the duration of the active season. Successful females had a longer postreproduction period before hibernation than less successful ones, probably serving to balance the costs of reproductive effort by extended preparation for hibernation. Also, females that had emerged early in spring and had high reproductive success were more likely to survive the subsequent winter. Hence, we found female common hamsters to vary strongly in maternal investment capacity and to tailor reproductive strategies accordingly.  相似文献   

20.
Kjell Bolmgren  Peter D. Cowan 《Oikos》2008,117(3):424-429
Parents face a timing problem as to when they should begin devoting resources from their own growth and survival to mating and offspring development. Seed mass and number, as well as maternal survival via plant size, are dependent on time for development. The time available in the favorable season will also affect the size of the developing juveniles and their survival through the unfavorable season. Flowering time may thus represent the outcome of such a time partitioning problem. We analyzed correlations between flowering onset time, seed mass, and plant height in a north-temperate flora, using both cross-species comparisons and phylogenetic comparative methods. Among perennial herbs, flowering onset time was negatively correlated with seed mass (i.e. plants with larger seeds started flowering earlier) while flowering onset time was positively correlated with plant height. Neither of these correlations was found among woody plants. Among annual plants, flowering onset time was positively correlated with seed mass. Cross-species and phylogenetically informed analyses largely agreed, except that flowering onset time was also positively correlated with plant height among annuals in the cross-species analysis. The different signs of the correlations between flowering onset time and seed mass (compar. gee regression coefficient=−7.8) and flowering onset time and plant height (compar. gee regression coefficient=+30.5) for perennial herbs, indicate that the duration of the growth season may underlie a tradeoff between maternal size and offspring size in perennial herbs, and we discuss how the partitioning of the season between parents and offspring may explain the association between early flowering and larger seed mass among these plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号