首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The primary lesion in a number of 5-fluoropyrimidine resistant mutants of Neurospora crassa has been identified. ud-1 mutants, previously designated fdu-2, are deficient in nucleoside uptake and show extensive intragenic complementation. uc-4 mutants lack uracil phosphoribosyl transferase with no complementation between 23 alleles. udk mutants lack uridine kinase activity. fdu-2 mutants affect the repression of the first two de novo pyrimidine biosynthetic enzymes, have no detectable uridine kinase activity and show decreased uridine uptake. Accordingly, fdu-2 may be involved in the regulation of pyrimidine uptake, salvage and de novo synthesis.Supported by S.R.C. grant GR/A/64655F. Buxton was supported during the period of this work by an S.R.C. Research Studentship  相似文献   

3.
Cytosine deaminase, encoded by the codA gene in Escherichia coli catalyzes the deamination of cytosine to uracil and ammonia. Regulation of codA expression was studied by determining the level of cytosine deaminase in E. coli K12 grown in various defined media. Addition of either pyrimidine or purine nucleobases to the growth medium caused repressed enzyme levels, whereas growth on a poor nitrogen source such as proline resulted in derepression of cytosine deaminase synthesis. Derepression of codA expression was induced by starvation for either uracil or cytosine nucleotides. Nitrogen control was found to be mediated by the glnLG gene products, and purine repression required a functional purR gene product. Studies with strains harbouring multiple mutations affecting both pyrimidine, purine and nitrogen control revealed that the overall regulation of cytosine deaminase synthesis by the different metabolites is cumulative.This paper is dedicated to Professor John Ingraham, Department of Bacteriology, University of California, Davis, on the occasion of his retirement, in recognition of his many contributions in the field of bacterial growth and metabolism  相似文献   

4.
Summary Purrtins can be utilized as a secondary nitrogen source by Neurospora crassa during conditions of nitrogen limitation. The expression of purine catabolic enzymes is governed by the nitrogen regulatory circuit and requires induction by uric acid. The major positive-acting nitrogen regulatory gene, nit-2, turns on the expression of the purine catabolic enzymes, which may also be subject to negative regulation by a second control gene, nmr. We have cloned alc, the structural gene which encodes allantoicase, an inducible enzyme of the purine degradative pathway. The identity of the alc clone was confirmed by restriction fragment length polymorphism analysis and by repeat-induced mutation. The alc gene is transcribed to give a single messenger RNA, approximately 1.2 kb in length. The negative-acting nmr gene affects the expression of alc in the expected manner. Both the nit-2 and the nmr control genes affect alc mRNA levels and allantoicase enzyme activity in both the induced and nitrogen-repressed conditions.  相似文献   

5.
Summary We have studied the relationship between purine salvage enzymes, 6-mercaptopurine resistance, and the purR phenotype in E. coli. Mutants resistant to 6-mercaptopurine were found to have defects in HPRT, the purR repressor, or in both. Analysis of these mutants led to the isolation of a hypoxanthine phosphoribosyl transferase-guanine phosphoribosyl transferase double mutant (hpt - gpt-) that is extremely sensitive to adenine. Two classes of adenine resistant mutants were isolated from this strain. The first class was deficient in APRT (apt -) while the second class represented purine regulatory mutants (purR -). There is thus selection for the purR phenotype in a hpt - gpt-background.Abbreviations FGAR formyl glycinamide ribotide - HPRT hypoxanthine phosphoribosyl transferase - GPRT guanine phosphoribosyl transferase - APRT adenine phosphoribosyl transferase - PRPP 5 phosphoribosyl-1 pyrophosphate - 6MP 6-mercaptopurine - FA 2-fluoroadenine  相似文献   

6.
7.
Summary In order to demonstrate that a cluster of five his genes (eight cistrons) on the circular chromosome of S. coelicolor is an operon, a constitutive mutant was characterized biochemically, and some aspects of enzyme repression were studied.The specific activities of three enzymes, two of which coded by genes of the his cluster and one specified by a his gene located far from the his cluster, were tested under different repression and derepression conditions and at various times of grwoth in a constitutive his mutant, in two leaky his mutants and in the wild type strains of S. coelicolor.The results of such investigations demonstrate that the constitutive mutant is derepressed exclusively for the synthesis of enzymes coded by genes of the his cluster; moreover only the synthesis of such enzymes takes place in a strictly coordinate way, suggesting that the his cluster behaves as a single unit of expression and regulation.  相似文献   

8.
5′-Nucleotidase, adenosine phosphorylase, adenosine deaminase and purine nucleoside phosphorylase, four enzymes involved in the utilization of exogenous purine compounds in Bacillus cereus, were measured in extracts of this organism grown in different conditions. It was found that adenosine deaminase is inducible by addition of adenine derivatives to the growth medium, and purine nucleoside phosphorylase by metabolizable purine and pyrimidine ribonucleosides. Adenosine deaminase is repressed by inosine, while both enzymes are repressed by glucose. Evidence is presented at during growth of B. cereus in the presence of AMP, the concerted action of 5′-nucleotidase and adenosine phosphorylase, two constitutive enzymes, leads to formation of adenine, and thereby to induction of adenosine deaminase. The ionsine formed would then cause induction of the purine nucleoside phosphorylase and repression of the deaminase. Taken together with our previous findings showing that purine nucleoside phosphorylase of B cereus acts as a translocase of the ribose moiety of ionsine inside the cell (Mura, U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol. Chem. 253, 7905–7909), our results provide a clear picture of the molecular events leading to the utilization of the sugar moiety of exogenous AMP, adenosine and inosine as an energy source.  相似文献   

9.
Summary Mutants were investigated that had elevated hexokinase activity and had been isolated previously as resistant to carbon catabolite repression (Zimmermann and Scheel 1977). They were allele tested with mutant strains of Lobo and Maitra (1977), which had defects in one or more of the genes coding for glucokinase and unspecific hexokinases. It was shown, that the mutation abolishing carbon catabolite repression had occured in a gene that was not allelic to any of the structural genes coding for hexokinases. This indicated that a regulatory defect was responsible for elevated hexokinase activity. This agreed with observations that hexokinase activities were like wild-type during growth on non-fermentable carbon sources in hex2 mutants. Recombination between the mutant allele hex2 and mutant alleles hxk1 and hxk2, coding for hexokinase PI and PII respectively, clearly demonstrated that only hexokinase PII was elevated in hex2 mutants. When hex2 mutant cells grown on YEP ethanol were shifted to YEP glucose media, hexokinase activity increased after 30min. This increase depended on de novo protein synthesis. hex2 mutants provide evidence, that carbon catabolite repression and synthesis of hexokinase PII are under common regulatory control.  相似文献   

10.
Summary Neurospora crassa can utilize various purine bases such as xanthine or uric acid and their catabolic products as a nitrogen source. The early purine catabolic enzymes in this organism are regulated by induction and by ammonium repression. Studies were undertaken to investigate purine base transport and its regulation in Neurospora. The results of competition experiments with uric acid and xanthine transport strongly suggest that uric acid and xanthine share a common transport system. It was also shown that the common transport system for uric acid and xanthine is distinct from a second transport system shared by hypoxanthine, adenine and guanine, and apparently also distinct from the transport system(s) for adenosine, cytosine and uracil. Regulation of the uric acid-xanthine transport system and the hypoxanthine-adenine-guanine transport system was studied. The results reveal that the uric acid-xanthine transport system is regulated by ammonium repression, but does not require uric acid induction. Neither ammonium repression nor uric acid induction controls the hypoxanthine-adenine-guanine transport system. A gene, designated amr, which is believed to be a positive regulatory gene for nitrogen metabolism of Neurospora crassa, was found to dramatically affect both the uric acid-xanthine transport system and the hypoxanthine-adenine-guanine transport system. A model for the action of the amr locus as a positive regulatory gene and for the interaction between the amr gene product and its recognition sites will be discussed.  相似文献   

11.
12.
13.
氧化葡萄糖酸杆菌(Gluconobacter oxydans)因具有快速不完全氧化糖醇化合物的能力而被广泛应用于工业中.然而,适用于氧化葡萄糖酸杆菌的基因编辑工具较为缺乏,科研人员对其进行代谢改造受到很大的限制.近年来,规律成簇间隔短回文重复序列(clustered regularly interspaced shor...  相似文献   

14.
15.
Current knowledge of the biochemistry of Trypanosoma cruzi has led to the development of new drugs and the understanding of their mode of action. Some trypanocidal drugs such as nifurtimox and benznidazole act through free radical generation during their metabolism. T. cruzi is very susceptible to the cell damage induced by these metabolites because enzymes scavenging free radicals are absent or have very low activities in the parasite. Another potential target is the biosynthetic pathway of glutathione and trypanothione, the low molecular weight thiol found exclusively in trypanosomatids. These thiols scavenge free radicals and participate in the conjugation and detoxication of numerous drugs. Inhibition of this key pathway could render the parasite much more susceptible to the toxic action of drugs such as nifurtimox and benznidazole without affecting the host significantly. Other drugs such as allopurinol and purine analogs inhibit purine transport in T. cruzi, which cannot synthesize purines de novo. Nitroimidazole derivatives such as itraconazole inhibit sterol metabolism. The parasite's respiratory chain is another potential therapeutic target because of its many differences with the host enzyme complexes. The pharmacological modulation of the host's immune response against T. cruzi infection as a possible chemotherapeutic target is discussed. A large set of chemicals of plant origin and a few animal metabolites active against T. cruzi are enumerated and their likely modes of action are briefly discussed.  相似文献   

16.
Spatial organization of metabolic enzymes may represent a general cellular mechanism to regulate metabolic flux. One recent example of this type of cellular phenomenon is the purinosome, a newly discovered multi-enzyme metabolic assembly that includes all of the enzymes within the de novo purine biosynthetic pathway. Our understanding of the components and regulation of purinosomes has significantly grown in recent years. This paper reviews the purine de novo biosynthesis pathway and its regulation, and presents the evidence supporting the purinosome assembly and disassembly processes under the control of G-protein-coupled receptor (GPCR) signaling. This paper also discusses the implications of purinosome and GPCR regulation in drug discovery.  相似文献   

17.
18.
19.
We have studied purine metabolism in the culture forms of Leishmania donovani and Leishmania braziliensis. These organisms are incapable of synthesizing purines de novo from glycine, serine, or formate and require an exogenous purine for growth. This requirement is better satisfied by adenosine or hypoxanthine than by guanosine. Bothe adenine and inosine are converted to a common intermediate, hypoxanthine, before transformation to nucleotides. This is due to the activity of an adenine aminohydrolase (EC 3.5.4.2), a rather unusual finding in a eukaryotic cell. There is a preferential synthesis of adenine nucleotides, even when guanine or xanthine are used as precursors.The pathways of purine nucleotide interconversions in these Leishmania resemble those found in mammalian cells except for the absence of de novo purine biosynthesis and the presence of an adenine-deaminating activity.  相似文献   

20.
The gene (aspA) encoding the extracellular aspartyl protease from Penicillium roqueforti was cloned and characterized. Northern hybridization analyses and β-casein degradation assays revealed that aspA was strongly induced by casein in the medium and efficiently repressed by ammonia. External alkaline pH overrides casein induction, resulting in aspA repression. Cis-acting motifs known to mediate nitrogen and pH regulation of fungal gene expression are present in the aspA promoter and protein-DNA binding experiments showed that mycelial proteins interact with various regions of the promoter. Due to the efficient environmental controls on aspA expression, the promoter of aspA is an attractive candidate for the development of a controllable gene expression system in P. roqueforti. Received: 20 March 1997 / Accepted: 21 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号