首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anticancer drug doxorubicin (DOX) has been linked to chimeric BR96, an internalizing monoclonal antibody that binds to a Lewis(y)-related, tumor-associated antigen, through two lysosomally cleavable dipeptides, Phe-Lys and Val-Cit, giving immunoconjugates 72 and 73. A self-immolative p-aminobenzyloxycarbonyl (PABC) spacer between the dipeptides and the DOX was required for rapid and quantitative generation of free drug. DOX release from model substrate Z-Phe-Lys-PABC-DOX 49 was 30-fold faster than from Z-Val-Cit-PABC-DOX 42 with the cysteine protease cathepsin B alone, but rates were identical in a rat liver lysosomal preparation suggesting the participation of more than one enzyme. Conjugates 72 and 73 showed rapid and near quantitative drug release with cathepsin B and in a lysosomal preparation, while demonstrating excellent stability in human plasma. Against tumor cell lines with varying levels of BR96 expression, both conjugates showed potent, antigen-specific cytotoxic activity, suggesting that they will be effective in delivering DOX selectively to antigen-expressing carcinomas.  相似文献   

2.
Immunoconjugates of monoclonal antibody BR96 and Doxorubicin have been prepared using a novel series of branched hydrazone linkers. Since each linker bound to the mAb carries two DOX molecules, the DOX/mAb molar ratios of these conjugates were approximately 16, twice that of those previously prepared with single-chain hydrazone linkers. The conjugates were stable at a physiological pH of 7, but released DOX rapidly at lysosomal pH 5. The branched series of BR96 conjugates demonstrated antigen-specific cytotoxicity, and were more potent in vitro than the single-chain conjugate on both a DOX (4-14-fold) and mAb (7-23-fold) basis. The results suggest that, by using the branched linker methodology, it is possible to significantly reduce the amount of mAb required to achieve antigen-specific cytotoxic activity. In this paper, the synthesis and in vitro biology of branched chain immunoconjugates are described.  相似文献   

3.
Polyacetal-doxorubicin conjugates designed for pH-dependent degradation   总被引:2,自引:0,他引:2  
Terpolymerization of poly(ethylene glycol) (PEG), divinyl ethers, and serinol can be used to synthesize water soluble, hydrolytically labile, amino-pendent polyacetals (APEGs) suitable for drug conjugation. As these polyacetals display pH-dependent degradation (with faster rates of hydrolysis at acidic pH) and they are not inherently hepatotropic after intravenous (iv) injection, they have potential for development as biodegradable carriers to facilitate improved tumor targeting of anticancer agents. The aim of this study was to synthesize a polyacetal-doxorubicin (APEG-DOX) conjugate, determine its cytotoxicity in vitro and evaluate its potential for improved tumor targeting in vivo compared to an HPMA copolymer-DOX conjugate in clinical development. Amino-pendent polyacetals were prepared, and following succinoylation (APEG-succ), the polymeric intermediate conjugated to DOX via one of three methods using carbodiimide mediated coupling (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in aqueous solution was the most successful). The resultant APEG-DOX conjugates had a DOX content of 3.0-8.5 wt %, contained <1.2% free DOX (relative to total DOX content) and had a M(w) = 60000-100000 g/mol and M(w)/M(n) = 1.7-2.6. In vitro cytotoxicity studies showed APEG-DOX to be 10-fold less toxic toward B16F10 cells than free DOX (IC(50) = 6 microg/mL and 0.6 microg/mL respectively), but confirmed the serinol-succinoyl-DOX liberated during main-chain degradation to be biologically active. When administered iv to C57 black mice bearing subcutaneous (sc) B16F10 melanoma, APEG-DOX of M(w) = 86000 g/mol, and 5.0 wt % DOX content exhibited significantly (p < 0.05) prolonged blood half-life and enhanced tumor accumulation compared to an HPMA copolymer-GFLG-DOX conjugate of M(w) = 30000 g/mol and 6.2 wt % DOX content. Moreover, APEG-DOX exhibited lower uptake by liver and spleen. These observations suggest that APEG anticancer conjugates warrant further development as novel polymer therapeutics for improved tumor targeting.  相似文献   

4.

Background

Conventional chemotherapy agent such as doxorubicin (DOX) is of limited clinical use because of its inherently low selectivity, which can lead to systemic toxicity in normal healthy tissue.

Methods

A pH stimuli-sensitive conjugate based on polyethylene glycol (PEG) with covalently attachment doxorubicin via hydrazone bond (PEG-hyd-DOX) was prepared for tumor targeting delivery system. While PEG-DOX conjugates via amid bond (PEG-ami-DOX) was synthesized as control.

Results

The synthetic conjugates were confirmed by proton nuclear magnetic resonance (NMR) spectroscopy, the release profile of DOX from PEG-hyd-DOX was acid-liable for the hydrazone linkage between DOX and PEG, led to different intracellular uptake route; intracellular accumulation of PEG-hyd-DOX was higher than PEG-ami-DOX due to its pH-triggered profile, and thereby more cytotoxicity against MCF-7, MDA-MB-231 (breast cancer models) and HepG2 (hepatocellular carcinoma model) cell lines. Following the in vitro results, we xenografted MDA-MB-231 cell onto SCID mice, PEG-hyd-DOX showed stronger antitumor efficacy than free DOX and was tumor-targeting.

Conclusions

Results from these in vivo experiments were consistent with our in vitro results; suggested this pH-triggered PEG-hyd-DOX conjugate could target DOX to tumor tissues and release free drugs by acidic tumor environment, which would be potent in antitumor drug delivery.  相似文献   

5.
Pharmacokinetics of the doxorubicin (DOX) conjugates with magnetite nanoparticles of the core/ shell type in mice following i.v. injection in a dose of 12.5 microg Fe/g tissue w/w was studied using electron spin resonance technique (ESR). Conjugation of the DOX with magnetic nanoparticles was shown to considerably decrease DOX bioavailability in the heart and kidney tissues compared to the free DOX. A non-uniform stationary magnetic field B of 210 mT and [deltaB] of 200 mT/cm was found to be efficient in increasing DOX conjugate bioavailability in the target site. The magnetic field was also found to inhibit conjugate accumulation in the liver resulted in the increased bioavailability of the conjugates in the blood. The phenomenon can be associated with in vivo inhibition of the phagocytic activity of the immunocompetent cells upon application of magnetic fields. Morphometry data in agreement with pharmacokinetic data revealed a decrease in the conjugate concentration in the liver tissue and cells as well as the relative decrease in conjugate concentration in the Kupffer cells compared to hepatocytes upon application of magnetic fields.  相似文献   

6.
P Saha  S Fortin  V Leblanc  S Parent  E Asselin  G Bérubé 《Steroids》2012,77(11):1113-1122
Doxorubicin (DOX) is an important medicine for the treatment of breast cancer, which is the most frequently diagnosed and the most lethal cancer in women worldwide. However, the clinical use of DOX is impeded by serious toxic effects such as cardiomyopathy and congestive heart failure. Covalently linking DOX to estrogen to selectively deliver the drug to estrogen receptor-positive (ER(+)) cancer tissues is one of the strategies under investigation for improving the efficacy and decreasing the cardiac toxicity of DOX. However, conjugation of drug performed until now was at 3- or 17-position of estrogen, which is not ideal since the hydroxyl groups at this position are important for receptor binding affinity. In this study, we designed, prepared and evaluated in vitro the first estrogen-doxorubicin conjugates at 16α-position of estradiol termed E-DOXs (8a-d). DOX was conjugated using a 3-9 carbon atoms alkylamide linking arm. E-DOXs were prepared from estrone using a seven-step procedure to afford the desired conjugates in low to moderate yields. The antiproliferative activities of the E-DOX 8a conjugate through a 3-carbon spacer chain on ER(+) MCF7 and HT-29 are in the micromolar range while inactive on M21 and the ER(-) MDA-MB-231 cells (>50μM). Compound 8a exhibits a selectivity ratio (ER(+)/ER(-) cell lines) of >3.5. Compounds 8b-8d bearing alkylamide linking arms ranging from 5 to 9 carbon atoms were inactive at the concentrations tested (>50μM). Interestingly, compounds 8a-8c exhibited affinity for the estrogen receptor α (ERα) in the nanomolar range (72-100nM) whereas compound 8d exhibited no affinity at concentrations up to 215nM. These results indicate that a short alkylamide spacer is required to maintain both antiproliferative activity toward ER(+) MCF7 and affinity for the ERα of the E-DOX conjugates. Compound 8a is potentially a promising conjugate to target ER(+) breast cancer and might be useful also for the design of more potent E-DOX conjugates.  相似文献   

7.
Telechelic water-soluble HPMA copolymers and HPMA copolymer-doxorubicin (DOX) conjugates have been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA) that contains an enzymatically degradable oligopeptide sequence. Postpolymerization aminolysis followed by chain extension with a bis-maleimide resulted in linear high molecular weight multiblock HPMA copolymer conjugates. These polymers are enzymatically degradable; in addition to releasing the drug (DOX), the degradation of the polymer backbone resulted in products with molecular weights similar to the starting material and below the renal threshold. The new multiblock HPMA copolymers hold potential as new carriers of anticancer drugs.  相似文献   

8.
Wei R  Cheng L  Zheng M  Cheng R  Meng F  Deng C  Zhong Z 《Biomacromolecules》2012,13(8):2429-2438
Reduction-sensitive reversibly core-cross-linked micelles were developed based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid (PEG-b-PHPMA-LA) conjugates and investigated for triggered doxorubicin (DOX) release. Water-soluble PEG-b-PHPMA block copolymers were obtained with M(n,PEG) of 5.0 kg/mol and M(n,HPMA) varying from 1.7 and 4.1 to 7.0 kg/mol by reversible addition-fragmentation chain transfer (RAFT) polymerization. The esterification of the hydroxyl groups in the PEG-b-PHPMA copolymers with lipoic acid (LA) gave amphiphilic PEG-b-PHPMA-LA conjugates with degrees of substitution (DS) of 71-86%, which formed monodispersed micelles with average sizes ranging from 85.3 to 142.5 nm, depending on PHPMA molecular weights, in phosphate buffer (PB, 10 mM, pH 7.4). These micelles were readily cross-linked with a catalytic amount of dithiothreitol (DTT). Notably, PEG-b-PHPMA(7.0k)-LA micelles displayed superior DOX loading content (21.3 wt %) and loading efficiency (90%). The in vitro release studies showed that only about 23.0% of DOX was released in 12 h from cross-linked micelles at 37 °C at a low micelle concentration of 40 μg/mL, whereas about 87.0% of DOX was released in the presence of 10 mM DTT under otherwise the same conditions. MTT assays showed that DOX-loaded core-cross-linked PEG-b-PHPMA-LA micelles exhibited high antitumor activity in HeLa and HepG2 cells with low IC(50) (half inhibitory concentration) of 6.7 and 12.8 μg DOX equiv/mL, respectively, following 48 h incubation, while blank micelles were practically nontoxic up to a tested concentration of 1.0 mg/mL. Confocal laser scanning microscope (CLSM) studies showed that DOX-loaded core-cross-linked micelles released DOX into the cell nuclei of HeLa cells in 12 h. These reduction-sensitive disassemblable core-cross-linked micelles with excellent biocompatibility, superior drug loading, high extracellular stability, and triggered intracellular drug release are promising for tumor-targeted anticancer drug delivery.  相似文献   

9.
Proteins of viral capsid may self-assemble into virus-like particles (VLPs) that can find many biomedical applications such as platform for drug delivery. In this paper, we describe preparation of VLPs by self-assembly of VP6, a rotavirus capsid protein that was chemically conjugated with doxorubicin (DOX), an anticancer drug. VP6 was first highly expressed in E. Coli, followed by purification and renaturation. DOX was then covalently attached to VP6 to form DOX-VP6 (DVP6) conjugates, which were subsequently self-assembled into VLPs under appropriate condition. Next, lactobionic acid (LA) was chemically linked to the surface of the VLPs. We demonstrated that the aforementioned nanosystem shows specific targeting to hepatoma cell line HepG2. The chemically functionalized VLPs, a kind of biological nanoparticles with excellent biocompatibility and biodegradability, can be prepared in large scale from E. Coli through our method, which may find practical applications in biomedicine.  相似文献   

10.
目的:制备叶酸介导的普兰多糖-阿霉素聚合物前药(FA-MP-DOX),实现阿霉素药物的靶向控制释放。方法:将普鲁兰多糖用马来酸酐进行修饰后,通过酰胺键键合阿霉素制备得到普鲁兰多糖-阿霉素(MP-DOX),继而酯键键合叶酸制备得到叶酸介导的普鲁兰多糖-阿霉素聚合物前药(FA-MP-DOX)。红外光谱、核磁共振光谱表征聚合物药物的结构,动态透析法模拟体外释药特性,监测不同pH值聚合物药物中阿霉素的释药特性,同时采用人口腔表皮样癌细胞(KB细胞)测定聚合物药物体系的细胞毒性。结果:①经核磁共振表征FA-MP-DOX聚合物合成完成。②在pH2.5、pH5.0及pH7.4的PBS缓冲体系16h中,阿霉素药物累积释放率分别为49.1%,30.3%和15.3%,证实FA-MP-DOX中阿霉素的释放具有pH依赖性。③细胞实验证实FA-MP-DOX的细胞毒性高于阿霉素和MP-DOX。结论:FA-MP-DOX聚合物药物有望成为阿霉素智能型控释和靶向性药物载体。  相似文献   

11.
We describe a six-step synthesis to water-soluble doxorubicin (DOX)-loaded biodegradable PEGylated star-comb polymers with favorable pharmaceutical properties by atom transfer radical polymerization (ATRP) starting with a commercially available tripentaerythritol carrying eight reactive sites. The low polydispersity polymers degrade in a stepwise manner into lower molecular weight (MW) fragments by 15 days at 37 °C at either pH 5.0 or pH 7.4. The half-life of the star-comb polymers in blood is dependent upon the molecular weight; the 44 kDa star-comb has a t(1/2, β) of 30.5 ± 2.1 h, which is not significantly changed (28.6 ± 2.7 h) when 6.6 wt % of DOX is attached to it via a pH-sensitive hydrazone linker. The star-comb polymers have low accumulation in organs but a high accumulation in C26 flank tumors implanted in Balb/C mice. The hydrodynamic diameter of polymer-DOX conjugates measured by dynamic light scattering increases from 8 to 35 to 41 nm as the loading is increased from 6.6 to 8.4 to 10.2 wt %. Although there is no significant difference in the t(1/2, β) or in the accumulation of polymer-DOX in C-26 tumors, the uptake of polymer in the spleen is significantly higher for polymers with DOX loadings greater than 6.6 wt %. Polymer accumulation in other vital organs is independent of the DOX loading. The facile synthesis, biodegradability, long circulation time, and high tumor accumulation of the attached drug suggests that the water-soluble star-comb polymers have promise in therapeutic applications.  相似文献   

12.
Binding of doxorubicin (DOX) immobilized on nanodispersed magnetite (DOX-M conjugates with loading in the range of 0.16-25.1 mg DOX/g carrier) to intact human erythrocytes in concurrence with free DOX was investigated. Two specific binding sites for doxorubicin were revealed at the plasma membrane of human erythrocytes. Changes in the ordering of the DOX-M nanoparticles according to small angle scattering data are consistent with their specific binding at the plasma membrane upon incubation with erythrocytes. Free and conjugated doxorubicin modulated signal transduction in erythrocytes in a similar way. Both up-regulate nitric oxide and cyclic GMP and down-regulate cyclic AMP production and stabilize the membranes of oxidatively damaged erythrocytes.  相似文献   

13.
Active transport of conjugated and unconjugated electrophiles out of cells is essential for cellular homeostasis. We have previously identified in human tissues a transporter, DNP-SG [S-(2, 4-dinitrophenyl)glutathione] ATPase, capable of carrying out this function [Awasthi et al. (1998) Biochemistry 37, 5231-5238, 5239-5248]. We now report the cloning of DNP-SG ATPase. The sequence of the cDNA clone was identical to that of human RLIP76, a known Ral-binding protein. RLIP76 expressed in E. coli was purified by DNP-SG affinity chromatography. Purified recombinant RLIP76: (1) had ATPase activity stimulated by DNP-SG or doxorubicin (DOX), and the K(m) values of RLIP76 for ATP, DOX, and DNP-SG were similar to those reported for DNP-SG ATPase; (2) upon reconstitution with asolectin as well as with defined lipids, catalyzed ATP-dependent transport of DNP-SG and DOX with kinetic parameters similar to those of DNP-SG ATPase; (3) when transfected into K562 cells, resulted in increased resistance to DOX, and increased ATP-dependent transport of DNP-SG and DOX by inside-out membrane vesicles from transfected cells; (4) direct uptake of purified RLIP76 protein into mammalian cells from donor proteoliposomes confers DOX resistance. These results indicate that RLIP76, in addition to its role in signal transduction, can catalyze transport of glutathione conjugates and xenobiotics, and may contribute to the multidrug resistance phenomenon.  相似文献   

14.
Singhal SS  Yadav S  Singhal J  Sahu M  Sehrawat A  Awasthi S 《FEBS letters》2008,582(23-24):3408-3414
This study was undertaken to characterize the consequences of Ral-interacting protein (RLIP76)-loss with respect to drug resistance, transport, radiation resistance, and alternative transport mechanisms in mouse embryonic fibroblasts (MEFs). MEFs were derived from RLIP76+/+, RLIP76+/- and RLIP76-/- mice. The transport of doxorubicin (DOX), colchicine (COL), leukotriene C4 and dinitrophenyl S-glutathione (DNP-SG) was analyzed in inside-out vesicles (IOVs) prepared from MEFs. We used immuno-titration of transport activity to determine the contribution of RLIP76, MRP1, and p-glycoprotein (Pgp) towards total transport activity. Loss of RLIP76 alleles resulted in significant sensitization to radiation, DOX, cisplatin, and vinorelbine (VRL). In IOVs prepared from MEFs, we observed a stepwise loss of transport activity. Loss of RLIP76 confers sensitivity to xenobiotics and radiation due to the loss of a common transport mechanism for glutathione-electrophile conjugates and xenobiotics.  相似文献   

15.
16.
We have recently demonstrated that RLIP76, a Ral-binding GTPase activating protein mediates ATP-dependent transport of glutathione (GSH) conjugates of electrophiles (GS-E) as well as doxorubicin (DOX), and that it is identical with DNP-SG ATPase, a GS-E transporter previously characterized by us in erythrocyte membranes (Awasthi et al. Biochemistry 39, 9327-9334). Multidrug resistance-associated protein (MRP1) belonging to the family of the ABC-transporters has also been suggested to be a GS-E transporter in human erythrocytes. Using immunological approaches, the present studies were designed to elucidate the relative contributions of RLIP76, MRP1, and P-glycoprotein (Pgp), in the ATP-dependent transport of GS-E and DOX in human erythrocytes. In Western blot analyses using antibodies against RLIP76, a strong expression of RLIP76 was observed in erythrocytes. Immunohistochemical studies using a fluorescent probe showed association of RLIP76 with erythrocyte membrane, which was consistent with its transport function. Neither MRP1 nor Pgp were detected in erythrocytes when the antibodies against MRP1 or Pgp were used. In erythrocyte inside-out vesicles (IOVs) coated with antibodies against RLIP76, a dose-dependent inhibition of the ATP-dependent transport of DOX and GS-E, including S-(dinitrophenyl)glutathione (DNP-SG), leukotriene C(4), and the GSH conjugate of 4-hydroxynonenal, was observed with a maximal inhibition of about 70%. On the contrary, in the IOVs coated with the antibodies against MRP1 or Pgp no significant inhibition of the ATP-dependent transport of these compounds was observed. These findings suggest that RLIP76 is the major ATP-dependent transporter of GS-E and DOX in human erythrocytes.  相似文献   

17.
nhaled chemotherapeutics have emerged as a promising regimen to combat lung cancer as they maximize local drug concentration while significantly reduce systemic exposure. However, the poor lung/systemic safety profiles and lack of clinically efficient formulations restrict the applicability of inhaled chemotherapeutics. This work developed a dry-powder inhaler (DPI) formulation that dispersed a pH-responsive poly(amidoamine) dendrimer-doxorubicin conjugate (G4-12DOX) into mannitol microparticles. The dendrimer conjugate only releases cytotoxic agents in response to intracellular pH drop, leading to reduced systemic and local toxicity. This work investigated the effect of G4-12DOX content on the microparticle size and morphology, redispersibility, in vitro cytotoxicity, and aerosol properties of the formulations. The spray-dried G4-12DOX/mannitol microparticles showed smooth and spherical morphology with 1–4 μm in diameter. As the content of the G4-12DOX conjugate in the microparticles increased, the size, and degree of aggregation of microparticles increased dramatically. The G4-12DOX/mannitol microparticles were readily redispersed in the aqueous environment, reverting to nanoscale dendrimer conjugates to escape alveolar phagocytosis. All DPI formulations demonstrated the similar cytotoxicity as the original conjugate against a lung adenocarcinoma cell line. The emitted dose (ED) and fine particle fraction (FPF) of the DPI formulations decreased as the content of G4-12DOX increased, but EDs and FPFs of all formulations fell within the range of 85–60% and 60–40%, which were higher than those of commercial products (EDs = 40–60%; FPFs = 12–40%). Therefore, the spray-dried dendrimer/mannitol microparticle is an efficient and practical DPI formulation for direct delivery of large dose of chemotherapeutics to lung tumors.  相似文献   

18.
A convergent strategy was employed to link eight 10-27-mer peptides to oligonucleotide phosphorothioates, resulting in twenty-six various conjugates. A stepwise synthesis strategy for the preparation of peptide-oligonucleotide phosphorothioate conjugates, employing Fmoc peptide chemistry, was developed and applied to the synthesis of four conjugates. Three of these conjugates contained either a 10 or 16-mer peptide, incorporating either 2 or 3 arginine residues, respectively.  相似文献   

19.
The treatment of membrane suspension from the guinea pig kidney cortex possessing Na+, + K+ -ATPase activity with 0.20% sodium deoxycholate (DOX : protein equals 12 : 1) leads to lowering of their enzymatic activity. DOX-treated preparation can be divided into two fractions by centrigugation (1 hr - 22 000 g). The pellet has 1.5-fold higher enzymatic activity than the initial preparation and cannot be activated by small amounts of histones. The supernatant has 2-fold lower enzymatic activity than the initial preparation but in presence of small amounts of histones this activity rises to the level of the initial preparation activity. The action of DOX treatment on the membrane structure of Na+ + K+ -ATPase preparations is discussed.  相似文献   

20.
Doxorubicin (DOX) is considered as the major culprit in chemotherapy‐induced cardiotoxicity. Yellow wine polyphenolic compounds (YWPC), which are full of polyphenols, have beneficial effects on cardiovascular disease. However, their role in DOX‐induced cardiotoxicity is poorly understood. Due to their antioxidant property, we have been suggested that YWPC could prevent DOX‐induced cardiotoxicity. In this study, we found that YWPC treatment (30 mg/kg/day) significantly improved DOX‐induced cardiac hypertrophy and cardiac dysfunction. YWPC alleviated DOX‐induced increase in oxidative stress levels, reduction in endogenous antioxidant enzyme activities and inflammatory response. Besides, administration of YWPC could prevent DOX‐induced mitochondria‐mediated cardiac apoptosis. Mechanistically, we found that YWPC attenuated DOX‐induced reactive oxygen species (ROS) and down‐regulation of transforming growth factor beta 1 (TGF‐β1)/smad3 pathway by promoting nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) nucleus translocation in cultured H9C2 cardiomyocytes. Additionally, YWPC against DOX‐induced TGF‐β1 up‐regulation were abolished by Nrf2 knockdown. Further studies revealed that YWPC could inhibit DOX‐induced cardiac fibrosis through inhibiting TGF‐β/smad3‐mediated ECM synthesis. Collectively, our results revealed that YWPC might be effective in mitigating DOX‐induced cardiotoxicity by Nrf2‐dependent down‐regulation of the TGF‐β/smad3 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号