首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) are potent immunosuppressive environmental contaminants acting on lymphocytes and monocytes. To establish whether differentiated macrophages, which play a crucial role in innate and acquired immunity, can also constitute major cellular targets, we have characterized PAH effects towards primary human macrophages. BP-treatment was found to dramatically alter their functional capacities and to trigger a caspase- and mitochondrion-related apoptosis, associated with down-regulation of the survival factors c-FLIP(L) and Bcl-X(L) and up-regulation of the pro-apoptotic factor p53. Such deleterious effects were associated with BP metabolite production, whose inhibition by the cytochrome P-450 1A1 inhibitor alpha-naphthoflavone fully abolished BP toxicity. In contrast to BP, the related halogenated arylhydrocarbon 2,3,7,8-tetrachlorodibenzo-p-dioxin, known to be poorly metabolized if any, only minimally affected macrophages. Overall, these data provide evidence for a cytochrome P-450-dependent toxicity of PAHs towards human differentiated macrophages, which may contribute to their immunosuppressive effects.  相似文献   

2.
The ability of a Deuteromycete fungus, Cladosporium sphaerospermum, previously isolated from soil of an aged gas manufacturing plant, to degrade polycyclic aromatic hydrocarbons was investigated. This strain was able to degrade PAHs in non-sterile soils (average 23%), including high molecular weight PAHs, after 4 weeks of incubation. In a microcosm experiment, PAH depletion was clearly correlated to fungal establishment. In liquid culture, this strain degraded rapidly benzo(a)pyrene during its early exponential phase of growth (18% after 4 days of incubation). Among extracellular ligninolytic enzyme activities tested, only laccase activity was detected in liquid culture in the absence or in presence of benzo(a)pyrene. C. sphaerospermum might be a potential candidate for an effective bioremediation of aged PAH-contaminated soils.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) are toxic environmental contaminants known to enhance production of pro-inflammatory cytokines such as IL-1beta. The present study was designed in order to determine whether TNFalpha, another cytokine acting in inflammation, may also constitute a target for these chemicals. Both TNFalpha mRNA and TNFalpha secretion levels were found to be enhanced in human BP-treated macrophages. Dioxin, a contaminant activating the aryl hydrocarbon receptor (AhR) like PAHs, was also shown to increase TNFalpha expression. BP-mediated TNFalpha induction was however not suppressed by AhR antagonists, making unlikely the involvement of the typical AhR signalling pathway. BP-exposure of macrophages did not enhance NF-kappaB DNA binding activity, but it activated the MAP kinase ERK1/2. In addition, the use of chemical inhibitors of extracellular signal-regulated protein kinase (ERK) activation fully abrogated induction of TNFalpha production in BP-treated macrophages. These data likely indicate that PAHs enhance TNFalpha expression in human macrophages through an ERK-related mechanism. Such a regulation may contribute to confer pro-inflammatory properties to these widely-distributed environmental contaminants.  相似文献   

4.
Zhang Z  Hou Z  Yang C  Ma C  Tao F  Xu P 《Bioresource technology》2011,102(5):4111-4116
A bacterial isolate, designated as DQ8, was found capable of degrading diesel, crude oil, n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in petroleum. Strain DQ8 was assigned to the genus Pseudomonas aeruginosa based on biochemical and genetic data. The metabolites identified from n-docosane as substrate suggested that P. aeruginosa DQ8 could oxidize n-alkanes via a terminal oxidation pathway. P. aeruginosa DQ8 could also degrade PAHs of three or four aromatic rings. The metabolites identified from fluorene as substrate suggested that P. aeruginosa DQ8 may degrade fluorene via two pathways. One is monooxygenation at C-9 of fluorene, and the other is initiated by dioxygenation at C-3 and C-4 of fluorene. P. aeruginosa DQ8 should be of great practical significance both in bioremediation of oil-contaminated soils and biotreatment of oil wastewater.  相似文献   

5.
6.
The objectives of this work were to isolate the microorganisms responsible for a previously observed degradation of polycyclic aromatic hydrocarbons (PAH) in soil and to test a method for cleaning a PAH-contaminated soil. An efficient PAH degrader was isolated from an agricultural soil and designated as Mycobacterium LP1. In liquid culture, it degraded phenanthrene (58%), pyrene (24%), anthracene (21%) and benzo(a)pyrene (10%) present in mixture (initial concentration 50 μg ml−1 each) and phenanthrene (92%) and pyrene (94%) as sole carbon sources after 14 days of incubation at 30°C. In soil, Mycobacterium LP1 mineralised 14C-phenanthrene (45%) and 14C-pyrene (65%) after 10 days. The good ability of this Mycobacterium was combined with the benzo(a)pyrene oxidation effect obtained by 1% w/w rapeseed oil in a sequential treatment of a PAH-spiked soil (total PAH concentration 200 mg kg−1). The first step was incubation with the bacterium for 12 days and the second step was the addition of the rapeseed oil after this time and a further incubation of 22 days. Phenanthrene (99%), pyrene (95%) and anthracene (99%) were mainly degraded in the first 12 days and a total of 85% of benzo(a)pyrene was transformed during the whole process. The feasibility of the method is discussed.  相似文献   

7.
The mutagenic activity of ethyl acetate extracts of culture medium from Cunninghamella elegans incubated 72 h with various polycyclic aromatic hydrocarbons (PAHs) was evaluated in the Salmonella typhimurium reversion assay. All of the PAH extracts were assayed in tester strains TA98 and TA100 both with and without metabolic activation using a liver fraction from Aroclor 1254-treated rats. None of the extracts from fungal incubations with the mutagenic PAHs, benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene and benz[a]anthracene, as well as the non-mutagenic PAHs, naphthalene, phenanthrene and anthracene, displayed any appreciable mutagenic activity. In addition, time course experiments indicated that the rate of decrease in mutagenic activity in the extracts from cultures incubated with benzo[a]pyrene or 7,12-dimethylbenz[a]anthracene was coincident with the rate of increase in total metabolism. The results demonstrated the ability of the fungus C. elegans to detoxify known carcinogens and mutagens and suggests that this organism may play an important role in the metabolism and inactivation of PAHs in the environment.Abbreviations hplc high performance liquid chromatography - tlc thin layer chromatography - PAH polycyclic aromatic hydrocarbon  相似文献   

8.
非流体介质中多环芳烃污染的微生物固定化修复技术   总被引:9,自引:2,他引:9  
非流体介质中多环芳烃(PAHs)污染的修复是目前环境工作者所面临的艰巨而紧迫的任务.由于非流体介质环境的特殊性,常规修复方法难以高效地发挥作用,传统微生物修复技术采用的游离微生物也存在许多弊端.而微生物固定化能大幅度地提高参加反应的微生物浓度,避免优势菌受土著菌的恶性竞争,增强微生物的耐环境冲击性.微生物固定化技术在一定程度上克服了传统工艺的不足,因而广泛应用于流体介质(废水等)和半流体介质(泥浆等)环境污染的修复.在概述固定化微生物技术的特点和分析国内外研究进展的基础上,指出将该技术应用于非流体介质中PAHs污染的原位修复领域的可行性,并论述了需要解决的关键科学问题,提出了利用微生物固定化技术修复非流体介质中PAHs污染的未来研究课题.  相似文献   

9.
Fungi, particularly the white rot basidiomycetes, have an extraordinary capability to degrade and/or mineralize (to CO2) the recalcitrant fused-ring high molecular weight (?4 aromatic-rings) polycyclic aromatic hydrocarbons (HMW PAHs). Despite over 30 years of research demonstrating involvement of P450 monooxygenation reactions in fungal metabolism of HMW PAHs, specific P450 monooxygenases responsible for oxidation of these compounds are not yet known. Here we report the first comprehensive identification and functional characterization of P450 monooxygenases capable of oxidizing different ring-size PAHs in the model white rot fungus Phanerochaete chrysosporium using a successful genome-to-function strategy. In a genome-wide P450 microarray screen, we identified six PAH-responsive P450 genes (Pc-pah1-Pc-pah6) inducible by PAHs of varying ring size, namely naphthalene, phenanthrene, pyrene, and benzo(a)pyrene (BaP). Using a co-expression strategy, cDNAs of the six Pc-Pah P450s were cloned and expressed in Pichia pastoris in conjunction with the homologous P450 oxidoreductase (Pc-POR). Each of the six recombinant P450 monooxygenases showed PAH-oxidizing activity albeit with varying substrate specificity towards PAHs (3-5 rings). All six P450s oxidized pyrene (4-ring) into two monohydroxylated products. Pc-Pah1 and Pc-Pah3 oxidized BaP (5-ring) to 3-hydroxyBaP whereas Pc-Pah4 and Pc-Pah6 oxidized phenanthrene (3-ring) to 3-, 4-, and 9-phenanthrol. These PAH-oxidizing P450s (493-547 aa) are structurally diverse and novel considering their low overall homology (12-23%) to mammalian counterparts. To our knowledge, this is the first report on specific fungal P450 monooxygenases with catalytic activity toward environmentally persistent and highly toxic HMW PAHs.  相似文献   

10.
污灌土壤中多环芳烃(PAHs)的积累与动态变化研究   总被引:43,自引:5,他引:43  
对污灌土壤中 1 4种多环芳烃的分析表明 ,各灌区土壤中 PAHs的积累一般以渠首最高 ,渠中次之 ,渠尾含量与对照相当 .但在沈抚石油灌区上、中和下游土壤中均有PAHs的积累 .此外 ,水稻生长期污灌可明显增加土壤中 PAHs的总量 ,各单一污染物的增、减趋势有所不同 .  相似文献   

11.
土壤,植物样品中多环芳烃(PAHs)分析方法研究   总被引:59,自引:5,他引:59  
土壤、植物和籽实样品分别用四氢呋喃、甲醇、乙酸乙酯以超声技术提取。提取液经旋转浓缩蒸发仪浓缩,经硅胶柱净化后,由高效液相色谱(HPLC)分离,萤光检测分析。对于土壤、植物和籽实样品,其方法回收率根据各个PAH化合物的理化性质不同分别为45.68-93.42、77.59-108.13和79.11-98.96%,结果表明,二氯甲烷、四氢呋喃适合作为土壤样品的提取剂;甲醇、乙酸乙酯分别适合于植物和籽实样  相似文献   

12.
Polycyclic aromatic hydrocarbon (PAH) o-quinone reductase (PQR) plays a crucial role in the detoxification of PAH o-quinones by reducing them to catechols. Two constitutive PQRs were found in cell extracts of a pyrene-degrading Mycobacterium sp. strain PYR100. The enzymes had an activity towards 9,10-phenanthrenequinone (PQ) and/or 4,5-pyrenequinone (PyQ), and the relative amounts varied with the pH of the culture media. PQR1, containing an FAD cofactor, was a monomer (20.1 kDa), and PQR2, with no flavin cofactor, was a homodimer (26.5 kDa subunits). There was no homology between the N-terminal sequences of PQR1 and PQR2. Dicumarol and quercetin inhibited PQR2 more strongly than PQR1. PQR1 had much lower specificity constants (k(cat)/K(m), 10(5)M(-1)s(-1)) for menadione (0.80) and PQ (5.19) than PQR2 (13.9 for menadione and 176 for PQ). Additionally, PQR2 exhibited a broad substrate specificity with high specificity constants for 1,4-naphthalenequinone, 1,2-naphthalenequinone, and PyQ.  相似文献   

13.
Ma B  Xu M  Wang J  Chen H  He Y  Wu L  Wang H  Xu J 《Bioresource technology》2011,102(22):10542-10547
The cell wall-cosolvent partition coefficients (Km) of polycyclic aromatic hydrocarbons (PAHs) were determined for Rhizopus oryzae cell walls by controlling the volume fraction of methanol (f) ranging from 0.1 to 0.5. Five cosolvent models were employed for extrapolating the cell wall-water partition coefficients (Kw) in pure water. The extrapolated Kw values of four PAHs on R. oryzae cell walls were ranged from 2.9 to 5.1. Comparison of various Kw values of pyrene generated from extrapolation and the QSPR model, together with predicted different (PD), mean percentage deviations (MPD), and root mean square errors (RSE), revealed that the performance of the LL and Bayesian models were the best among all five tested cosolvent models. This study suggests that R. oryzae cell walls play an important role in the partitioning of PAHs during bioremediation because of the high Kw of fungal cell walls.  相似文献   

14.
An integrated monitoring, of chemical, microbiological and ecotoxicological parameters, was performed for a biotreatability study of polycyclic aromatic hydrocarbons (PAHs)—contaminated brackish sediments. Three slurry reactors were prepared, consisting of (a) a slurry with sediment and seawater called TQ slurry, to evaluate the intrinsic bioremediation potential, (b) a slurry with the addition of a selected microbial consotrium called BIO slurry, to evaluate the bioaugmentation effect, (c) a slurry with the addition of Soya lecithin called LEC slurry, to evaluate the effect of the addition of a natural surfactant. Biodegradation results showed that both BIO and LEC slurries enhanced PAHs removal, increasing the biodegradation rate for 5- and 6-ring PAHs. Furthermore, ecotoxicological response (Microtox® assay on whole sediment, aqueous extract and organic extract) demonstrated a detoxification of the PAHs initial mixture only for BIO slurry. The findings that aerobic PAHs degradation can be stimulated via inoculation with adapted sediment bacteria suggest that a bioaugmentation process may be a useful strategy for ex-situ treatment.  相似文献   

15.
Increasing evidence suggests that polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (BaP) are localized to the mitochondria. Because the toxic effects of many PAHs are the result of metabolism by cytochrome P4501A (CYP1A), it is important to investigate whether active forms of these enzymes can be identified in the mitochondria. In this study, we identified mitochondrial P450s with a monoclonal antibody against scup (Stenotomus chrysops) CYP1A in the isolated mitochondrial fraction of the liver from adult male mummichog (Fundulus heteroclitus) livers. The size of the protein in the mitochondria was similar to that of microsomal CYP1A. Fish dosed with 10 mg/kg BaP had increased EROD activity in the mitochondrial fraction compared to controls. In mummichog larvae dosed with 100 µg/L BaP and 100 µg/L benzo[k]fluoranthene, CYP1A protein levels as well as enzyme activity were elevated. However, fish from a PAH-polluted Superfund site (Elizabeth River, Portsmouth VA) showed recalcitrant mitochondrial CYP1A protein levels and enzyme activity in a similar manner to microsomal CYP1A.  相似文献   

16.
To investigate the expression of aryl hydrocarbon receptor repressor (AhRR) and related molecules in various tissues and the effects of aromatic hydrocarbons (AHs) on their expression, we developed a reliable technique of quantification of human AhRR as well as aryl hydrocarbon receptor (AhR), AhR nuclear translocator (ARNT) and cytochrome P450 1A1 (CYP1A1) mRNA by real-time TaqMan PCR method. First, we examined the expression of these genes in human adult or fetal tissues. The levels of AhRR expression were extremely high in testis, very high in lung, ovary, spleen and pancreas from adults, whereas those were low in those from fetuses. On the other hand, CYP1A1 expression was extremely high in lung, and AhR and ARNT were ubiquitously expressed in almost all tissues. Second, we compared the expression levels of these genes in mononuclear cells (MNCs) from various sources. Comparison of the basal expression levels of these genes in MNCs demonstrated that MNCs from umbilical cord blood showed higher AhRR or CYP1A1 expression than those from adults. The induction of AhRR or CYP1A1 expression by 3-methylcholanthrene (3-MC) was observed in MNCs from adults but not from umbilical cord blood. Consequently, there existed characteristic differences in the basal levels of AhRR and CYP1A1 expression in MNCs, as well as in their inducibility by 3-MC among MNCs from various types of human bloods. These results will provide basic information for a possible application of AhRR and CYP1A1 measurements to evaluate AH exposure in vivo.  相似文献   

17.
One of the systems that regulate tissue homeostasis is gap junction intercellular communication (GJIC). It is accepted that the down-regulation of GJIC is linked to the tumor-promoting properties of carcinogens. In this study, the effect of some carcinogenic and non-carcinogenic polycyclic aromatic hydrocarbons (PAH) on GJIC was investigated. It was found that in hepatoma cell culture (Hep G2) carcinogenic PAH inhibited GJIC after 24 h exposure by 75-100% depending on the PAH structure. The inhibition effect on GJIC is reversible because removing the PAH by changing of culture medium restores the GJIC. The non-carcinogenic PAH do not significantly influence GJIC. alpha-Naphthoflavone, an inhibitor of PAH metabolism, has no effect on inhibition of GJIC by carcinogenic PAH. 2,3,7,8-Tetrachloro-p-dibenzodioxin, an aryl hydrocarbon (Ah) receptor ligand, inhibits GJIC by about 50% only after 48 h exposure. To clarify the role of formation of PAH metabolites and interaction with Ah receptor on inhibition of GJIC, we determined the effect of benzo/a/pyrene on hepatoma G27 cells in which neither mRNA of CYP1A1 nor Ah receptor was determined. As in Hep G2 cells, benzo/a/pyrene, unlike non-carcinogenic benzo/e/pyrene, inhibits GJIC. We conclude that in the studied hepatoma cells carcinogenic PAH inhibit GJIC directly (that is, not via their metabolites) and this effect is not associated with Ah receptor interaction.  相似文献   

18.
The degradation of two isomeric three-ringed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus D1 and the litter-decomposing fungus Agaricus bisporus F-8 was studied. Despite some differences, the degradation of phenanthrene and anthracene followed the same scheme, forming quinone metabolites at the first stage. The further fate of these metabolites was determined by the composition of the ligninolytic enzyme complexes of the fungi. The quinone metabolites of phenanthrene and anthracene produced in the presence of only laccase were observed to accumulate, whereas those formed in presence of laccase and versatile peroxidase were metabolized further to form products that were further included in basal metabolism (e.g. phthalic acid). Laccase can catalyze the initial attack on the PAH molecule, which leads to the formation of quinones, and that peroxidase ensures their further oxidation, which eventually leads to PAH mineralization.A. bisporus, which produced only laccase, metabolized phenanthrene and anthracene to give the corresponding quinones as the dominant metabolites. No products of further utilization of these compounds were detected. Thus, the fungi's affiliation with different ecophysiological groups and their cultivation conditions affect the composition and dynamics of production of the ligninolytic enzyme complex and the completeness of PAH utilization.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs) represent a complex mixture of toxic compounds that are ubiquitous in the environment. We investigated the utility of head space-solid phase microextraction (HS-SPME) to measure the following surrogate PAHs in urine: naphthalene (NAP), phenanthrene (PHE), pyrene (PYR), and benzo(a)pyrene (BAP), representing classes of 2-, 3-, 4- and 5-ring compounds, respectively. We then applied the method to urine from 28 coke oven workers (median levels (microg/l) were: NAP=3.65, PHE=1.51, PYR=0.003, BAP not detected) and 22 controls (median (microg/l) NAP=0.859, PHE=0.062, PYR=0.001, BAP not detected). Urinary levels of NAP, PHE, and PYR were all associated with exposure category (controls, side- and bottom-workers, and top-workers) but not with smoking status. Strong correlations were observed between urinary levels of NAP, PHE, and PYR in coke-oven workers. Our results indicate that unmetabolized 2-, 3- and 4-ring PAHs can be measured in urine by HS-SPME. Such measurements can be used to investigate the uptake and metabolism of complex PAH mixtures in humans.  相似文献   

20.
土壤-植物系统中多环芳烃和重金属的行为研究   总被引:14,自引:0,他引:14  
对土壤中多环芳烃和重金属的行为研究表明,与对照相比,0—20cm以上表土层存在多环芳烃和重金属积累,20cm以下土层未发现积累;与春、秋两次采样结果相比,土壤中多环芳烃的含量有所下降,表明土壤微生物对多环芳烃有一定降解作用,且其降解程度与土壤-植物系统的生态结构有关.菲在地下水中检出浓度较高,表明这一污染物有向下迁移的可能性.此外,柳树对土壤中重金属Cd的积累有明显的削减与净化作用.本研究表明,严格限制污水中多环芳烃和重金属的污染负荷以及设计合理的生态结构是避免多环芳烃和重金属在土壤中积累的关键.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号