首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The marine clam genus Lasaea is unique among marine bivalves in that it contains both sexual and asexual lineages. We employed molecular tools to infer intrageneric relationships of geographically restricted sexual versus cosmopolitan asexual forms. Polymerase chain reaction primers were used to amplify and sequence homologous 624 nucleotide fragments of COIII from polyploid, asexual, direct-developing individuals representing northeastern Pacific, northeastern Atlantic, Mediterranean, southern Indian Ocean, and Australian populations. DNA sequences also were obtained from the two known diploid congeners, the Australian sexual, indirect developer, Lasaea australis, and an undescribed meiotic Australian direct developer. Estimated tree topologies did not support monophyly for polyploid asexual Lasaea lineages. A robust dichotomy was evident in all phylogenetic trees and each of the two main branches included one of the diploid meitoic Australian congeners. Lasaea australis clustered with two of the direct-developing, polyploid asexual haplotypes, one from Australia, the other from the northeastern Atlantic. Monophyly is supported for the diploid Australian direct-developing lineage together with the remaining polyploid asexual lineages from the northeastern Pacific, northeastern Atlantic, Mediterranean, and southern Indian Ocean. These results indicate that asexual Lasaea lineages are polyphyletic and may have resulted from multiple hybridization events. The high degree of genetic divergence of asexual lineages from co-clustering meiotic congeners (16%–22%) and among geographically restricted monophyletic clones (9%–11%) suggests that asexual Lasaea lineages may be exceptionally long lived.  相似文献   

2.
The distributional pattern of geographical parthenogenesis has not yet been clearly explained. In Daphnia pulex, asexuals are found at higher latitude and in more marginal habitats than their sexual relatives. In addition, some asexual lineages, especially northern ones, are polyploid. This study aimed to test if polyploid clones are more resistant than sympatric diploid clones to a wide range of environmental factors and if asexual Daphnia (diploid clones) are more tolerant of extreme environmental conditions than sexual ones. We report significant differences in survivorship after short-term exposure to acute pH, conductivities, and temperature in 12 lineages of the Daphnia pulex complex. Ploidy level, reproductive mode, geographic origin, and heterozygosity level had a significant effect on survival but their effect varied depending on environmental factors.  相似文献   

3.
The increased interest in asexual organisms calls for in-depth studies of asexual complexes that actively give rise to new clones. We present an extensive molecular study of the Otiorhynchus scaber (Coleoptera, Curculionidae) weevil system. Three forms have traditionally been recognized: diploid sexuals, triploid, and tetraploid parthenogens. All forms coexist in a small central area, but only the polyploid parthenogens have colonized marginal areas. Analyzing the phylogenetic relationship, based on three partial mitochondrial genes, of 95 individuals from 19 populations, we find that parthenogenesis and polyploidy have originated at least three times from different diploid lineages. We observe two major mitochondrial lineages, with over 2.5% sequence divergence between the most basal groups within them, and find that current distribution and phylogenetic relationships are weakly correlated. Quite unexpectedly, we also discover diploid clones that coexist with, and are morphologically indistinguishable from, the diploid sexual females. Our results support that these diploid clones are derived directly from the diploid sexuals. We also find that it is mainly an increase in ploidy level and not the benefits of asexual reproduction that confers to polyploid parthenogens the advantage over their diploid sexual relatives.  相似文献   

4.
Transitions from sexual to asexual reproduction are often coupled with elevations in ploidy. As a consequence, the importance of ploidy per se for the maintenance and spread of asexual populations is unclear. To examine the effects of ploidy and asexual reproduction as independent determinants of the success of asexual lineages, we sampled diploid sexual, diploid asexual, and triploid asexual Eucypris virens ostracods across a European wide range. Applying nuclear and mitochondrial markers, we found that E. virens consists of genetically highly differentiated diploid sexual populations, to the extent that these sexual clades could be considered as cryptic species. All sexual populations were found in southern Europe and North Africa and we found that both diploid asexual and triploid asexual lineages have originated multiple times from several sexual lineages. Therefore, the asexual lineages show a wide variety of genetic backgrounds and very strong population genetic structure across the wide geographic range. Finally, we found that triploid, but not diploid, asexual clones dominate habitats in northern Europe. The limited distribution of diploid asexual lineages, despite their shared ancestry with triploid asexual lineages, strongly suggests that the wider geographic distribution of triploids is due to elevated ploidy rather than to asexuality.  相似文献   

5.
DNA methylation is an epigenetic mechanism that has the potential to affect plant phenotypes and that is responsive to environmental and genomic stresses such as hybridization and polyploidization. We explored de novo methylation variation that arises during the formation of triploid asexual dandelions from diploid sexual mother plants using methylation‐sensitive amplified fragment length polymorphism (MS‐AFLP) analysis. In dandelions, triploid apomictic asexuals are produced from diploid sexual mothers that are fertilized by polyploid pollen donors. We asked whether the ploidy level change that accompanies the formation of new asexual lineages triggers methylation changes that contribute to heritable epigenetic variation within novel asexual lineages. Comparison of MS‐AFLP and AFLP fragment inheritance in a diploid × triploid cross revealed de novo methylation variation between triploid F1 individuals. Genetically identical offspring of asexual F1 plants showed modest levels of methylation variation, comparable to background levels as observed among sibs in a long‐established asexual lineage. Thus, the cross between ploidy levels triggered de novo methylation variation between asexual lineages, whereas it did not seem to contribute directly to variation within new asexual lineages. The observed background level of methylation variation suggests that considerable autonomous methylation variation could build up within asexual lineages under natural conditions.  相似文献   

6.
We examined genetic variation in sympatric diploid and polyploid brine shrimp Artemia parthenogenetica from each of three populations (China, Italy and Spain). Italian and Spanish tetraploids are closely related (I=0.964). Diploids and tetraploids within each of the two European populations are also closely related (mean I=0.905). Most alleles found in diploids also exist in sympatric polyploids. In contrast, the asexual Artemia (2N, 4N and 5N) in our study share few alleles with their close sexual relative, A. tunisiana (mean I=0.002). These results, as well as the work of other authors, strongly suggest that at least the tetraploid Artemia in our study have an autopolyploid origin.Clonal diversity of polyploid Artemia can be very high at least in some population. Both diploids and polyploids had low clonal diversities in the populations dominated by polyploids and high clonal diversities in the population dominated by diploids.The most common genotypes of sympatric diploid and polyploid Artemia frequently differed. Some alleles occurred only in diploids, while others were restricted to polyploids. These results suggest that polyploidy in Artemia has led to genetic divergence from diploid progenitors, and that ploidy-level variation must also be considered in developing an understanding of spatial and temporal allozyme polymorphism in asexual populations.  相似文献   

7.
Genetic variation in sexual and clonal lineages of a freshwater snail   总被引:3,自引:0,他引:3  
Sexual reproduction within natural populations of most plants and animals continues to remain an enigma in evolutionary biology. That the enigma persists is not for lack of testable hypotheses but rather because of the lack of suitable study systems in which sexual and asexual females coexist. Here we review our studies on one such organism, the freshwater snail Potamopyrgus antipodarum (Gray). We also present new data that bear on hypotheses for the maintenance of sex and its relationship to clonal diversity. We have found that sexual populations of the snail are composed of diploid females and males, while clonal populations are composed of a high diversity of triploid apomictic females. Sexual and asexual individuals coexist in stable frequencies in many ‘mixed’ populations; genetic data indicate that clones from these mixed populations originated from the local population of sexual individuals without interspecific hybridization. Field data show that clonal and sexual snails have completely overlapping life histories, but individual clonal genotypes are less variable than individuals from the sympatric sexual population. Field data also show segregation of clones among depth‐specific habitat zones within a lake, but clonal diversity remains high even within habitats. A new laboratory experiment revealed extensive clonal variation in reproductive rate, a result which suggests that clonal diversity would be low in nature without some form of frequency‐dependent selection. New results from a long‐term field study of a natural, asexual population reveal that clonal diversity remained nearly constant over a 10‐year period. Nonetheless, clonal turnover occurs, and it occurs in a manner that is consistent with parasite‐mediated, frequency‐dependent selection. Reciprocal cross‐infection experiments have further shown that parasites are more infective to sympatric host snails than to allopatric snails, and that they are also more infective to common clones than rare clones within asexual host populations. Hence we suggest that sexual reproduction in these snails may be maintained, at least in part, by locally adapted parasites. Parasite‐mediated selection possibly also contributes to the maintenance of local clonal diversity within habitats, while clonal selection may be responsible for the distribution of clones among habitats. © 2003 The Linnean Society of London. Biological Journal of the Linnean Society 2003, 79 , 165–181.  相似文献   

8.
Asexual reproduction in vertebrates is rare and generally considered an evolutionary dead end. Asexuality is often associated with polyploidy, and several hypotheses have been put forward to explain this relationship. So far, it remains unclear whether polyploidization in asexual organisms is a frequent or a rare event. Here we present a field study on the gynogenetic Amazon molly, Poecilia formosa. We used multilocus fingerprints and microsatellites to investigate the genetic diversity in 339 diploid and 55 triploid individuals and in 25 P. mexicana, its sexual host. Although multilocus DNA fingerprints found high clonal diversity in triploids, microsatellites revealed only two very similar clones in the triploids. Phylogenetic analysis of microsatellite data provided evidence for a monophyletic origin of the triploid clones of P. formosa. In addition, shared alleles within the triploid clones between the triploid and diploid genotypes and between asexual and sexual lineages indicate a recent origin of triploid clones in Poecilia formosa.  相似文献   

9.
Phylogenetic studies typically demonstrate lower evolutionary ages of clones, relative to their sexual ancestors. This has often been attributed to heightened extinction risk of asexual organisms. We previously criticized such interpretations and demonstrated that the life span of clones is ultimately limited by neutral drift depending on the rate at which new clones are spawned into an asexual community of a finite size. Therefore, it is important to investigate whether the natural rates of such influxes are sufficiently high to account for the relative ephemerality of clones without assuming their increased extinction rate. I applied the neutral clonal turnover model to phylogenies of polyploid asexual ferns and simulated the coalescent trees over a wide range of demographic structures and sampling schemes. On parameterizing the model with biologically relevant estimates of population sizes and plant polyploidization rates, simulated clonal assemblages appeared younger than their sexual counterparts even in the absence of selection against clones. Therefore, differences observed between the ages of sexual and clonal lineages may be explained by the neutral clonal turnover. Researchers should consider the possibility that natural clones may get lost by neutral drift before their fate could eventually be affected by any long‐term constraints of asexuality.  相似文献   

10.
C. W. Birky-Jr. 《Genetics》1996,144(1):427-437
Little attention has been paid to the consequences of long-term asexual reproduction for sequence evolution in diploid or polyploid eukaryotic organisms. Some elementary theory shows that the amount of neutral sequence divergence between two alleles of a protein-coding gene in an asexual individual will be greater than that in a sexual species by a factor of 2tu, where t is the number of generations since sexual reproduction was lost and u is the mutation rate per generation in the asexual lineage. Phylogenetic trees based on only one allele from each of two or more species will show incorrect divergence times and, more often than not, incorrect topologies. This allele sequence divergence can be stopped temporarily by mitotic gene conversion, mitotic crossing-over, or ploidy reduction. If these convergence events are rare, ancient asexual lineages can be recognized by their high allele sequence divergence. At intermediate frequencies of convergence events, it will be impossible to reconstruct the correct phylogeny of an asexual clade from the sequences of protein coding genes. Convergence may be limited by allele sequence divergence and heterozygous chromosomal rearrangements which reduce the homology needed for recombination and result in aneuploidy after crossing-over or ploidy cycles.  相似文献   

11.
Cyclically parthenogenetic organisms may have facultative asexual counterparts. Such organisms, including aphids, are therefore interesting models for the study of ecological and genetic interactions between lineages differing in reproductive mode. Earlier studies on aphids have revealed major differences in the genetic outcomes of populations that are possibly resulting mostly either from sexual or from asexual reproduction. Besides, notable gene flow between sexual and asexual derivatives has been suspected, which could lead to the emergence of new asexual lineages. The present study examines the interplay between these lineages and is based on analyses of population structure of individuals that may contribute to the pool of sexual reproductive forms in the host alternating aphid Rhopalosiphum padi. Using a Bayesian assignment method, we first show that the sexual forms of R. padi on mating sites encompass two genetically distinct clusters of individuals in the western part of France. The first cluster included unique genotypes of sexual lineages, while the second cluster included facultatively asexual lineages in numerous copies, the reproductive mode of the two clusters being confirmed by reference clones. Sexual reproductive forms produced by sexual and facultatively asexual lineages are thus admixed at mating sites which gives a large opportunity for the two clusters to mate with each other. Nevertheless, this study also highlights, as previously demonstrated, that the two clusters retained high genetic differentiation. Possible explanations for the inferred limited genetic exchanges are advanced in the discussion, but further dedicated investigations are required to solve this paradox.  相似文献   

12.
Geographic patterns of parthenogenesis and the number of transitions from sexual diploidy to asexual (apomictic) autopolyploidy were examined for 40 populations of the Easter daisy, Townsendia hookeri. Analyses of pollen diameter and stainability characterized 15 sexual diploid and 25 apomictic polyploid populations from throughout the plant's western North American range. Sexual diploids were restricted to two Wisconsin refugia: Colorado/Wyoming, south of the ice sheets, and northern Yukon/Beringia. Chloroplast DNA sequencing uncovered 17 polymorphisms within the ndhF gene and trnK intron, yielding 10 haplotypes. Phylogenetic analyses indicated that five exclusively polyploid haplotypes were derived from four haplotypes that are shared among ploidies, conservatively inferring a minimum of four origins of apomictic polyploidy. Three of these apomictic polyploid origins were derived from southern sexual diploids, while the fourth origin was derived from northern sexual diploids. Analyses of regional diversity were suggestive of a formerly broad distribution for sexual diploids that has become subsequently fragmented, possibly due to the last round of glaciation. As sexual diploids were exclusively found north and south of the glacial maximum, while formerly glaciated areas were exclusively inhabited by asexual polyploids derived from both northern and southern sexual lineages, it is more likely that patterns of glaciation, as opposed to a particular latitudinal trend, played a causal role in the establishment of the observed pattern of geographic parthenogenesis in Easter daisies.  相似文献   

13.
Understanding the source and diversity of clones is necessary to resolve the complicated issues surrounding the apparent evolutionary stability of sexual reproduction. The source of clones is important because present theory is based on an “all else equal” assumption, which is predicated on the idea that clonal mutants are derived from and compete with local sexual populations. Clonal diversity is important because it reduces the advantage of sexual reproduction under either soft selection (the Tangled Bank Hypothesis) or under strict frequency-dependent selection (the Red Queen Hypothesis). In the present study, protein electrophoresis was used to determine the source and diversity of clones in a freshwater snail (Potamopyrgus antipodarum) in four glacial lakes in which sexual and clonal females were thought to coexist. The results showed (1) that the populations were mixtures of diploid sexual and triploid asexual individuals, (2) that genotypic diversity of clonal populations is very high in all four lakes (but lower than in the sympatric sexual populations), and (3) that the clones are polyphyletically derived from their sympatric sexual populations. Consequently, repeated mutation to parthenogenetic reproduction since the Pleistocene has introduced a different and diverse set of clones in all four lakes. Such diversity may provide a challenge for the ecological theories of sex that rely on frequency-dependent selection.  相似文献   

14.
M Neiman  A D Kay  A C Krist 《Heredity》2013,110(2):152-159
The predominance of sexual reproduction despite its costs indicates that sex provides substantial benefits, which are usually thought to derive from the direct genetic consequences of recombination and syngamy. While genetic benefits of sex are certainly important, sexual and asexual individuals, lineages, or populations may also differ in physiological and life history traits that could influence outcomes of competition between sexuals and asexuals across environmental gradients. Here, we address possible phenotypic costs of a very common correlate of asexuality, polyploidy. We suggest that polyploidy could confer resource costs related to the dietary phosphorus demands of nucleic acid production; such costs could facilitate the persistence of sex in situations where asexual taxa are of higher ploidy level and phosphorus availability limits important traits like growth and reproduction. We outline predictions regarding the distribution of diploid sexual and polyploid asexual taxa across biogeochemical gradients and provide suggestions for study systems and empirical approaches for testing elements of our hypothesis.  相似文献   

15.
The relative advantages of sexual and parthenogenetic reproduction have long interested biologists and remain a central issue in ecological and evolutionary studies. Recent data on brine shrimp (Artemia) indicate that extensive ecological and genetic divergence occurs in an obligately parthenogenetic lineage. This challenges the belief that parthenogenetic lineages are evolutionary 'dead ends' and that extensive divergence is necessarily linked to recent recruitment from sexual ancestors. The molecular evidence suggests that parthenogenesis in Artemia is relatively ancient, with a single asexual lineage branching from an Old World sexual ancestor approximately five million years ago. Automictic recombination (which can occur in diploid but not polyploid parthenogenetic brine shrimp) appears to play a central role in the long-term maintenance of the parthenogenetic lineage.  相似文献   

16.
Negative reproductive interactions are likely to be strongest between close relatives and may be important in limiting local coexistence. In plants, interspecific pollen flow is common between co‐occurring close relatives and may serve as the key mechanism of reproductive interference. Agamic complexes, systems in which some populations reproduce through asexual seeds (apomixis), while others reproduce sexually, provide an opportunity to examine effects of reproductive interference in limiting coexistence. Apomictic populations experience little or no reproductive interference, because apomictic ovules cannot receive pollen from nearby sexuals. Oppositely, apomicts produce some viable pollen and can exert reproductive interference on sexuals by siring hybrids. In the Crepis agamic complex, sexuals co‐occur less often with other members of the complex, but apomicts appear to freely co‐occur with one another. We identified a mixed population and conducted a crossing experiment between sexual diploid C. atribarba and apomictic polyploid C. barbigera using pollen from sexual diploids and apomictic polyploids. Seed set was high for all treatments, and as predicted, diploid–diploid crosses produced all diploid offspring. Diploid–polyploid crosses, however, produced mainly polyploidy offspring, suggesting that non‐diploid hybrids can be formed when the two taxa meet. Furthermore, a small proportion of seeds produced in open‐pollinated flowers was also polyploid, indicating that polyploid hybrids are produced under natural conditions. Our results provide evidence for asymmetric reproductive interference, with pollen from polyploid apomicts contributing to reduce the recruitment of sexual diploids in subsequent generations. Existing models suggest that these mixed sexual–asexual populations are likely to be transient, eventually leading to eradication of sexual individuals from the population.  相似文献   

17.
A life-history transition to asexuality is typically viewed as leading to a heightened extinction risk, and a number of studies have evaluated this claim by examining the relative ages of asexual versus closely related sexual lineages. Surprisingly, a rigorous assessment of the age of an asexual plant lineage has never been published, although asexuality is extraordinarily common among plants. Here, we estimate the ages of sexual diploids and asexual polyploids in the fern genus Astrolepis using a well-supported plastid phylogeny and a relaxed-clock dating approach. The 50 asexual polyploid samples we included were conservatively estimated to comprise 19 distinct lineages, including a variety of auto- and allopolyploid genomic combinations. All were either the same age or younger than the crown group comprising their maternal sexual-diploid parents based simply on their phylogenetic position. Node ages estimated with the relaxed-clock approach indicated that the average maximum age of asexual lineages was 0.4 My, and individual lineages were on average 7 to 47 times younger than the crown- and total-ages of their sexual parents. Although the confounding association between asexuality and polyploidy precludes definite conclusions regarding the effect of asexuality, our results suggest that asexuality limits evolutionary potential in Astrolepis.  相似文献   

18.
In order to study how polyploidy affects life history patterns in animals, we have examined sympatric diploid and polyploid brine shrimp (Artemia parthenogenetica) from China, Italy and Spain under laboratory conditions. At optimal temperature and salinity (25°C and 90 ppt), diploids from the three populations had much higher intrinsic rates of increase, higher fecundity, faster developmental rates, and larger brood sizes than their sympatric polyploids. The Chinese and Italian populations were selected for further analysis to determine the life history responses of diploids and polyploids to temperature and salinity changes. Under intermediate and high salinities, Chinese and Italian polyploids produced most of their offspring as dormant cysts while their sympatric diploids produced most of their offspring as nauplii. This relationship is reversed in the Spanish diploid-polyploid complex. For the Chinese population at 25° C, pentaploid clones had higher developmental rates than diploid clones at 35 ppt; at 90 ppt, diploid clones had higher developmental rates than the pentaploids. Italian diploids and tetraploids had different responses to variation in both temperature (25° C and 31° C) and salinity (30 ppt and 180 ppt). Our results demonstrate that relative fitness of the two cytotypes is a function of environmental conditions and that sympatric diploids and polyploids respond differently to environmental changes. Chinese and Italian polyploids are expected to have lower fitness than their sympatric diploids when the physical environment is not stressful and when intraspecific competition is important. However, polyploids may have advantages over sympatric diploids in stressful habitats or when they encounter short-term lethal temperatures. These results suggest that polyploid Artemia have evolved a suite of life-history characteristics adapting them to environments that contrast to those of their sympatric diploids.  相似文献   

19.
Genome size was estimated in 49 clones of the Daphnia pulex complex from temperate and subarctic locations using flow cytometry and microsatellite DNA analyses. Significant genome size differences were found in diploid species belonging to the two genetically distinct groups (the pulicaria and the tenebrosa groups), with clones from the tenebrosa group having genome sizes 22% larger than those in the pulicaria group. Combined flow cytometry and microsatellite DNA analyses revealed that nearly all polyploid clones in the D. pulex complex are triploid and not tetraploid, as was previously suggested. Sequencing analyses of the ND5 gene to position clones in their respective clades within the D. pulex complex have uncovered three triploid clones of Daphnia middendorffiana with a D. pulex maternal parent. This result was unexpected because Daphnia pulicaria has always been identified as the maternal parent of these hybrid polyploid clones. Triploid clones likely owe their origins to interactions between sexual and asexual populations. Further interactions in the tenebrosa group have generated tetraploid clones but these events have been rare.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 68–79.  相似文献   

20.
Given the hybrid genomic constitutions and increased ploidy of many asexual animals, the identification of processes governing the origin and maintenance of clonal diversity provides useful information about the evolutionary consequences of interspecific hybridization, asexuality and polyploidy. In order to understand the processes driving observed diversity of biotypes and clones in the Cobitis taenia hybrid complex, we performed fine-scale genetic analysis of Central European hybrid zone between two sexual species using microsatellite genotyping and mtDNA sequencing. We found that the hybrid zone is populated by an assemblage of clonally (gynogenetically) reproducing di-, tri- and tetraploid hybrid lineages and that successful clones, which are able of spatial expansion, recruit from two ploidy levels, i.e. diploid and triploid. We further compared the distribution of observed estimates of clonal ages to theoretical distributions simulated under various assumptions and showed that new clones are most likely continuously recruited from ancestral populations. This suggests that the clonal diversity is maintained by dynamic equilibrium between origination and extinction of clonal lineages. On the other hand, an interclonal selection is implied by nonrandom spatial distribution of individual clones with respect to the coexisting sexual species. Importantly, there was no evidence for sexually reproducing hybrids or clonally reproducing non-hybrid forms. Together with previous successful laboratory synthesis of clonal Cobitis hybrids, our data thus provide the most compelling evidence that 1) the origin of asexuality is causally linked to interspecific hybridization; 2) successful establishment of clones is not restricted to one specific ploidy level and 3) the initiation of clonality and polyploidy may be dynamic and continuous in asexual complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号