首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Molybdenum-containing aldehyde oxidase is a key enzyme for catalyzing the final step of abscisic acid (ABA) biosynthesis in plants. Sulfuration of the molybdenum cofactor (MoCo) is an essential step for activating aldehyde oxidase. The molybdenum cofactor sulfurase (MCSU) that transfers the sulfur ligand to aldehyde oxidase-bound MoCo is thus considered an important factor in regulating the ABA levels in plant tissues. In this study, we identified the rice MCSU cDNA (OsMCSU), which is the first MCSU gene cloned in monocot species. According to the functional domain analysis of the predicted amino acid sequence, the OsMCSU protein contains a Nifs domain at its N-terminus and a MOSC domain at the C-terminus. Expression of the OsMCSU gene was up-regulated by salt stress in root tissues of rice seedlings, but this effect was not observed in leaf tissues. In roots, regulations of OsMCSU expressions could be mediated by both ABA-dependent and ABA-independent signaling pathways under salt stress condition.  相似文献   

6.
We have previously reported on the presence of a CArG motif at -100 in the Rous sarcoma virus long terminal repeat which binds an avian nuclear protein termed enhancer factor III (EFIII) (A. Boulden and L. Sealy, Virology 174:204-216, 1990). By all analyses, EFIII protein appears to be the avian homolog of the serum response factor (SRF). In this study, we identify a second CArG motif (EFIIIB) in the Rous sarcoma virus long terminal repeat enhancer at -162 and show only slightly lower binding affinity of the EFIII/SRF protein for this element in comparison with c-fos serum response element (SRE) and EFIII DNAs. Although all three elements bind the SRF with similar affinities, serum induction mediated by the c-fos SRE greatly exceeds that effected by the EFIII or EFIIIB sequence. We postulated that this difference in serum inducibility might result from binding of factors other than the SRF which occurs on the c-fos SRE but not on EFIII and EFIIIB sequences. Upon closer inspection of nuclear proteins which bind the c-fos SRE in chicken embryo fibroblast and NIH 3T3 nuclear extracts, we discovered another binding factor, SRE-binding protein (SRE BP), which fails to recognize EFIII DNA with high affinity. Competition analyses, methylation interference, and site-directed mutagenesis have determined that the SRE BP binding element overlaps and lies immediately 3' to the CArG box of the c-fos SRE. Mutation of the c-fos SRE so that it no longer binds SRE BP reduces serum inducibility to 33% of the wild-type level. Conversely, mutation of the EFIII sequence so that it binds SRE BP with high affinity results in a 400% increase in serum induction, with maximal stimulation equaling that of the c-fos SRE. We conclude that binding of both SRE BP and SRF is required for maximal serum induction. The SRE BP binding site coincides with the recently reported binding site for rNF-IL6 on the c-fos SRE. Nonetheless, we show that SRE BP is distinct from rNF-IL6, and identification of this novel factor is being pursued.  相似文献   

7.
8.
9.
10.
11.
Wheeler JM  Thomas JH 《Genetics》2006,174(3):1327-1336
Organisms exposed to the damaging effects of high osmolarity accumulate solutes to increase cytoplasmic osmolarity. Yeast accumulates glycerol in response to osmotic stress, activated primarily by MAP kinase Hog1 signaling. A pathway regulated by protein kinase C (PKC1) also responds to changes in osmolarity and cell wall integrity. C. elegans accumulates glycerol when exposed to high osmolarity, but the molecular pathways responsible for this are not well understood. We report the identification of two genes, osm-7 and osm-11, which are related members of a novel gene family. Mutations in either gene lead to high internal levels of glycerol and cause an osmotic resistance phenotype (Osr). These mutants also have an altered defecation rhythm (Dec). Mutations in cuticle collagen genes dpy-2, dpy-7, and dpy-10 cause a similar Osr Dec phenotype. osm-7 is expressed in the hypodermis and may be secreted. We hypothesize that osm-7 and osm-11 interact with the cuticle, and disruption of the cuticle causes activation of signaling pathways that increase glycerol production. The phenotypes of osm-7 are not suppressed by mutations in MAP kinase or PKC pathways, suggesting that C. elegans uses signaling pathways different from yeast to mount a response to osmotic stress.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
A new gene, the product of which is involved in the regulation of photosynthesis gene expression in the anoxygenic photosynthetic bacterium Rhodobacter sphaeroides 2.4.1, has been identified. The isolation of this gene, designated appA (activation of photopigment and puc expression), was based on its ability, when provided in extra copies, to partially suppress mutations in the two-component PrrB-PrrA regulatory system. The presence of extra copies of the appA gene in either prrB, prrA, or wild-type strains resulted in an activation of puc::lacZ expression under aerobic conditions. Constructed AppA null mutants did not grow photosynthetically and were impaired in the synthesis of both bacteriochlorophyll and carotenoids, as well as the structural proteins of the photosynthetic spectral complexes. When grown anaerobically in the dark, these mutants accumulated bacteriochlorophyll precursors. The expression of lacZ fusions to several photosynthesis genes and operons, including puc, puf, and bchF, was decreased in the AppA mutant strains in comparison with the wild type. To examine the role of AppA involvement in bacteriochlorophyll biosynthesis, we inactivated an early gene, bchE, of the bacteriochlorophyll pathway in both wild-type and AppA- mutant backgrounds. The double mutant, AppA- BchE-, was found to be severely impaired in photosynthesis gene expression, similar to the AppA- BchE+ mutant and in contrast to the AppA+ BchE- mutant. This result indicated that AppA is more likely involved in the regulation of expression of the bch genes than in the biosynthetic pathway per se. The appA gene was sequenced and appears to encode a protein of 450 amino acids with no obvious homology to known proteins.  相似文献   

20.
17Beta-estradiol (E2) induces proliferation and c-fos gene expression in MCF-7 cells and both responses are partially blocked by wortmannin and LY294002 which are inhibitors of phosphatidylinositol-3-kinase (PI3-K). Analysis of the c-fos gene promoter shows that the effects of wortmannin and LY294002 are associated with inhibition of E2-induced activation through the serum response factor (SRF) motif within the proximal serum response element at -325 and -296. E2 activates constructs containing multiple copies of the SRF (pSRF) and a GAL4-SRF fusion protein; these responses are accompanied by PI3-K-dependent phosphorylation of Akt and inhibited by wortmannin/LY294002, the antiestrogen ICI 182780, but not by the mitogen-activated protein kinase kinase (MAPKK) inhibitor PD98059. Using a series of kinase inhibitors and dominant negative kinase expression plasmids, it was shown that the non-genomic activation of SRF by E2 was associated with src-ras-PI3-K pathway, thus, demonstrating hormonal activation of the SRE through src-ras activation of both PI3-K- and MAPK-dependent signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号