首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Major J  Jakab MG  Tompa A 《Mutation research》1999,445(2):241-249
Premature (early) centromere division (PCD, i.e., the separation of centromeres during the prometaphase/metaphase of the mitotic cycle) seems to be a possible manifestation of chromosome instability in human chromosome-breakage syndromes. Chromosome instability also frequently occurs in the peripheral blood lymphocytes (PBL) of humans occupationally exposed to clastogenic agents, and is considered an etiologic factor of neoplastic diseases. In order to investigate the importance of PCD in cancer risk assessment, we studied the frequency of PCDs in PBL of 400 Hungarian subjects. The various groups comprised 188 control donors and 212 subjects occupationally exposed to different genotoxic chemicals, such as acrylonitrile (ACN) and/or dimethylformamide (DMF), benzene, cytostatic drugs, ethylene oxide (ETO), mixed exposure in the rubber industry, mixed organic solvents including CCl4, hot oil-mist, bitumen, and polychlorinated biphenyls (PCB). Data were compared with chromosomal aberration frequencies determined in the same samples. PCD yields are significantly higher in populations exposed to mixed chemicals, crude oil and cytostatic drugs, compared with controls. PCDs involving more than three chromosomes are also more frequent in ETO- and oil mist-exposed groups than in the others. The results indicate that the induction of PCDs is neither incidental nor artificial. As a consequence, we suggest that PCD can be developed into a new, exposure-related cytogenetic biomarker for a more adequate occupational cancer risk assessment. A further, follow-up epidemiological and cytogenetic investigation of PCD is in progress.  相似文献   

2.
Cytogenetic studies on rural populations exposed to pesticides   总被引:3,自引:0,他引:3  
The authors have carried out cytological analysis of 72 h lymphocyte cultures from peripheral blood and internal examinations of 80 workers professionally exposed to a complex of pesticides and that of 24 control persons. There was a significant increase of chromosome aberrations in relation to the duration of exposure. The additive role of alcohol consumption and smoking in evoking aberrations was also studied with inconclusive results because of the limited number of cases. Internal examinations revealed a more frequent occurrence of acute as well as chronic diseases among the workers aged 21-40 years.  相似文献   

3.
4.
5.
6.
In the present study the cytogenetic effects in hospital workers exposed to low-level radiation were evaluated. Samples of peripheral blood were collected from 63 subjects working in radiodiagnostics and from 30 subjects, working in the same hospitals, who were used as controls. A higher number of cells with chromosome-type aberrations (CA) was observed in the exposed workers vs. the controls and the difference was statistically significant (p less than 0.05). No correlation was, on the contrary, found between CA and years of exposure. A significant difference was observed in the incidence of cells with CA between smokers and non-smokers, but in the control group only. In contrast, in the workers exposed to ionizing radiation, the frequency of cells with CA was very similar in smokers and non-smokers.  相似文献   

7.
8.
A cytogenetic monitoring study was carried out on a group of workers in clinical analysis laboratories to investigate the risk of occupational exposure to chronic low levels of chemicals.Thirty-four clinical laboratories have been involved in the study. In these laboratories, toxicants and analytical procedures utilized have been characterized. The individual occupational exposure of workers was assessed by use of a questionnaire concerning the chemical substances utilized. About 300 different chemicals have been identified.Cytogenetic analyses (chromosomal aberration and micronucleus tests) were carried out on a strictly selected group of 50 workers enrolled from these laboratories and compared to 53 controls (healthy blood donors) matched for gender and age.The exposed group shows a significantly higher frequency of genetic damage than the control group. Both chromatid and chromosome aberration frequencies in workers appear significantly higher than in controls. Similarly, comparison between micronucleated cells rates of exposed and unexposed groups show significantly higher frequencies of binucleated cells with micronucleus (BNMN) and of total micronuclei (MN tot) in workers than in controls.  相似文献   

9.
A cytogenetic monitoring study was carried out on a group of workers in clinical analysis laboratories to investigate the risk of occupational exposure to chronic low levels of chemicals.Thirty-four clinical laboratories have been involved in the study. In these laboratories, toxicants and analytical procedures utilized have been characterized. The individual occupational exposure of workers was assessed by use of a questionnaire concerning the chemical substances utilized. About 300 different chemicals have been identified.Cytogenetic analyses (chromosomal aberration and micronucleus tests) were carried out on a strictly selected group of 50 workers enrolled from these laboratories and compared to 53 controls (healthy blood donors) matched for gender and age.The exposed group shows a significantly higher frequency of genetic damage than the control group. Both chromatid and chromosome aberration frequencies in workers appear significantly higher than in controls. Similarly, comparison between micronucleated cells rates of exposed and unexposed groups show significantly higher frequencies of binucleated cells with micronucleus (BNMN) and of total micronuclei (MN tot) in workers than in controls.  相似文献   

10.
Industrial radiography is the process of using either gamma-emitting radionuclide sources or X-ray machines to examine the safety of industrial materials. Industrial radiographers are among the radiation workers who receive the highest individual occupational radiation doses. To assess occupationally induced chromosomal damage, we performed the cytokinesis-block micronucleus (CBMN) assay in peripheral lymphocytes of 29 male industrial radiographers, exposed to ionizing radiation for 12.8 years±11.2, in comparison with 24 gender-, age-, and smoking habits-matched controls. The CBMN assay was combined with fluorescent in situ hybridization with a pan-centromeric DNA probe in 17 exposed subjects and 17 controls randomized from the initial populations. The mean cumulative equivalent dose, recorded by film dosimeters, was 67.2 mSv±49.8 over the past 5 years. The mean micronucleated binucleated cell rate (MCR) was significantly higher in the industrial radiographers than in the controls (10.7‰±5.2 versus 6.6‰±3.1, P=0.009); this difference was due to a significantly higher frequency of centromere-negative micronuclei (C−MN) in exposed subjects than in controls (8.5‰±4.9 versus 2.2‰±1.6, P<0.001). The two populations did not significantly differ in centromere-positive micronuclei (C+MN) frequency. These findings demonstrate a clastogenic effect in lymphocytes of industrial radiographers. MCR significantly positively correlated with age in the two groups. After correction for the age effect, MCR did not correlate with duration of occupational exposure. No correlation between radiation doses and MCR, C−MN, and C+MN frequencies was observed. In addition to physical dosimetry records, the enhanced chromosomal damage in lymphocytes of industrial radiographers emphasizes the importance of radiation safety programs.  相似文献   

11.
Industrial radiography is the process of using either gamma-emitting radionuclide sources or X-ray machines to examine the safety of industrial materials. Industrial radiographers are among the radiation workers who receive the highest individual occupational radiation doses. To assess occupationally induced chromosomal damage, we performed the cytokinesis-block micronucleus (CBMN) assay in peripheral lymphocytes of 29 male industrial radiographers, exposed to ionizing radiation for 12.8 years+/-11.2, in comparison with 24 gender-, age-, and smoking habits-matched controls. The CBMN assay was combined with fluorescent in situ hybridization with a pan-centromeric DNA probe in 17 exposed subjects and 17 controls randomized from the initial populations. The mean cumulative equivalent dose, recorded by film dosimeters, was 67.2 mSv+/-49.8 over the past 5 years. The mean micronucleated binucleated cell rate (MCR) was significantly higher in the industrial radiographers than in the controls (10.7 per thousand +/-5.2 versus 6.6 per thousand +/-3.1, P=0.009); this difference was due to a significantly higher frequency of centromere-negative micronuclei (C-MN) in exposed subjects than in controls (8.5 per thousand +/-4.9 versus 2.2 per thousand +/-1.6, P<0.001). The two populations did not significantly differ in centromere-positive micronuclei (C+MN) frequency. These findings demonstrate a clastogenic effect in lymphocytes of industrial radiographers. MCR significantly positively correlated with age in the two groups. After correction for the age effect, MCR did not correlate with duration of occupational exposure. No correlation between radiation doses and MCR, C-MN, and C+MN frequencies was observed. In addition to physical dosimetry records, the enhanced chromosomal damage in lymphocytes of industrial radiographers emphasizes the importance of radiation safety programs.  相似文献   

12.
When compared with non-exposed controls, a group of pesticide plant workers chronically exposed to methyl-parathion did not show an increased frequency of chromosome aberrations in lymphocyte cultures. Although methyl-parathion increased chromosome aberrations in cases of intoxication, a chronic exposure to small doses in the work place did not seem to produce the same effect.  相似文献   

13.
The favorite subject of recent literature on biotechnical processes has been ethanol fermentation. This review covers a number of new technics developed, including immobilized biocatalyst technology and bacterial fermentations. Reference is also made to recent work on whey, starch, inulin, and cellulosic materials as substrates for ethanol production. Renewed interest in acetonebutanol fermentation for solvent and liquid fuel production has also been clearly evident during the last two years. Biotechnical production of organic acids has been considered as an alternative route to chemical feedstocks. New developments in amino acid, methane, hydrogen, and hydrocarbon production, and on hydrocarbon oxidation are also briefly covered.  相似文献   

14.
Cytogenetic study of workers exposed to chromium compounds   总被引:7,自引:0,他引:7  
Wu FY  Tsai FJ  Kuo HW  Tsai CH  Wu WY  Wang RY  Lai JS 《Mutation research》2000,464(2):289-296
The frequency of sister chromatid exchanges (SCEs), high SCE frequency cells (HFCs), and genetic polymorphism of genotypes glutathione S-transferase (GST) M1 and T1 were analyzed in peripheral lymphocytes of 35 workers occupationally exposed to chromium (Cr) and 35 matched control group. Results showed that workers exposed to Cr showed 6.07 SCE/cell, as compared to 4.76 SCE/cell for the control group (p<0.01). Smokers showed a statistically significant higher frequency of SCE than non-smokers in both groups. The work duration of Cr workers was an important factor. Workers exposed for more than 5 years showed a significantly higher level of SCEs (p<0.05). Workers exposed to Cr for 5 or more years had higher HFC rates (51.4%) than those exposed for less than 5 years (22.9%), with an odds ratio of 4.5 times than those exposed for less than 5 years. In HFC analysis, Cr workers who smoked showed a higher level of HFC (60%) than the control group (5.7%) and also had a higher odds ratio (60.4) compared with the control group. Among non-smokers, the odds ratio was 9.0. Another objective of this study is to investigate the relationship between SCE and genetic polymorphisms of GST M1 and T1 in Cr workers. The results showed that the incidence of GSTM1 null genotype was 60% in the control group and 77.1% in Cr workers, and percentages of GSTT1 deletion were 42.9% and 62.9% in control and exposed individuals, respectively. There was a slightly increased frequency of SCE among Cr workers with GSTM1 null genotype as opposed to non-null genotype individuals. A similar result was seen among the control group; however, there were no statistically significant differences. In conclusion, the current study found the positive induction of SCE in workers who smoked or/and were exposed to Cr. However, different GST genotypes did not influence the level of cytogenetic damage between groups. Despite slight variation in numbers, they all appear to be not different.  相似文献   

15.
Non-disjunction events, spontaneous or induced, are rather frequent in plants. In Petunia, no significant effect of γ-radiations was detected. However, the study of some monogametic mutants characterized by a terminal deletion showed that, at the level of the chromosome pair involved by this deletion, both the frequency of specific trisomics and the recombination fractions between 4 marker loci were considerably increased in the progeny of the mutants as compared with that of the control.These features, i.e. deletion-induced non-disjunction and recombination, may be considered as indirect effects of radiations. Generalization to other species may be of importance in the fields of mammalian genetics and plant breeding.  相似文献   

16.
17.
DNA adduct formation, route of absorption, metabolism and chemistry of 12 hazardous chemicals are reviewed. Methods for adduct detection are also reviewed and approaches to sensitivity and specificity are identified. The selection of these 12 chemicals from the Environmental Protection Agency list of genotoxic chemicals was based on the availability of information and on the availability of populations potentially suitable for molecular epidemiological study. The 12 chemicals include ethylene oxide, styrene, vinyl chloride, epichlorohydrin, propylene oxide, 4,4'-methylenebis-2-chloroaniline, benzidine, benzidine dyes (Direct Blue 6, Direct Black 38 and Direct Brown 95), acrylonitrile and benzyl chloride. While some of these chemicals (styrene and benzyl chloride, possibly Direct Blue 6) give rise to unique DNA adducts, others do not. Potentially confounding factors include mixed exposures in the work place, as well the formation of common DNA adducts. Additional research needs are identified.  相似文献   

18.
Cytogenetic damage in workers exposed to ethylene oxide   总被引:1,自引:0,他引:1  
Sister-chromatid exchanges (SECs) and chromosomal aberrations (CAs) were detected in the peripheral lymphocytes of 41 sanitary workers exposed to ethylene oxide (EO) in the sterilizing units of 8 hospitals in the Venice Region. The first group (19 workers) was exposed to 10.7 +/- 4.9 ppm EO, expressed as the time-weighted average concentration for an 8-h working day (TWA/8 h conc.), and the second group (22 workers) to 0.35 +/- 0.12 ppm. Each exposed worker was paired with a control of similar age and smoking habits. A highly significant (P less than 0.001) increase in the mean frequency of SCEs was found in the higher exposure group, 14 (74%) exposed subjects having significantly increased levels of SCEs compared to their matched controls. In the lower exposure group, the increase in mean frequency of SCEs was lower, though still significant (P less than 0.05): 7 (33%) exposed subjects had higher and 1 (5%) had a lower SCE level than the matched controls. From the first group, 10 subjects, 7 of whom had increased SCE levels, were reanalysed 12-18 months after their exposure had been lowered or interrupted: in only 2 of them the SCE level was significantly decreased. A statistically significant correlation between SCE frequency and level of EO exposure (TWA/8 h conc.), as well as a multiple correlation between SCE level and EO exposure, smoking and age were found. However, no interaction could be detected between EO exposure and smoking in the induction of SCEs. In controls, SCE frequency was correlated with smoking and age. In the higher exposure group, the number of both chromatid- and chromosome-type aberrations, independent of gaps, was significantly increased, whereas in the lower exposure group only the frequency of chromosome-type aberrations, excluding gaps, was statistically higher than in controls. The level of CAs remained to a great extent unchanged in the 10 subjects re-examined at a later stage after lowering or halting exposure. Taking the group as a whole, the frequency of cells with total CAs was found to be weakly (P = 0.05) correlated with EO exposure, and was not correlated with smoking, age or SCE frequency.  相似文献   

19.
Ten persons occupationally exposed to ethylene oxide (EO), used in the sterilization of medical instruments, were studied at a hospital. The estimated concentration to which they were exposed was 60–69 ppm, TWA. Peripheral blood samples from 10 workers and 10 controls of the same age and sex were taken to determine the frequency of sister-chromatid exchanges (SCE) and chromosomal aberrations (CA). The mean frequencies of SCE/cell (X = S) were 13.27 for the exposed workers and 6.05 for controls. Chromosome aberration frequencies in exposed individuals were significantly increased compared with controls. A significant relationship between the frequencies of SCE and CA and EO exposure was demonstrated. Blood chemistry parameters such as urea, creatinine, uric acid, lactic dehydrogenase, glutamic oxaloacetic and pyruvic transaminases, luteinizing gonadotropin and follicle stimulating gonadotropin and thyrotropin were also measured and found to be within the normal range.  相似文献   

20.
The use of mercapturic acids (N-acetyl-L-cysteine S-conjugates, MAs) in the biological monitoring of human exposure to environmental and industrial chemicals is receiving more and more attention. Mercapturic acids (MAs) are formed from glutathione (GSH) S-conjugates via the MA-pathway. Although this pathway can lead to different end-products, the formation of MAs is the predominant route in most species, including man. Two GSH S-transferases (GSTs) show genetic polymorphisms in humans and this can have major consequences for individual susceptibility to toxic effects and for MA formation. In occupational toxicology, adducts to biomacromolecules are also used as biomarkers. DNA adducts are a measure for the effective dose, while protein adducts are related to the dose at critical site. Both type of adducts are normally determined in blood, while MAs are determined in urine. Most MAs are excreted with relatively short half-lifes, allowing a direct evaluation of the occupational circumstances. For many compounds similar (linear) dose-dependency was found for MA excretion, formation of macromolecular adducts, and for various biomarkers of toxic effects. These relations together with fact that MAs relate to the electrophilic character of compounds, allows for the conclusion that MAs are biomarkers of toxicologically relevant internal doses of chemicals or their metabolites. An overview will be given here of the use of MAs in the assessment of internal human exposure to electrophilic environmental and industrial chemicals. Additionally, the formation of GSH S-conjugates, their catabolism to MAs and several of the frequently used analytical approaches are discussed. When appropriate, the influence of genetic polymorphisms on formation of MAs and on susceptibility to toxicity will be discussed for different chemicals as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号