首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Park S  Kim ES  Noh DY  Hwang KT  Moon A 《Cytokine》2011,55(1):126-133
Ras expression has been suggested to be a marker for tumor aggressiveness of breast cancer. We previously showed that H-Ras, but not N-Ras, induced invasive/migratory phenotypes in MCF10A human breast epithelial cells. The present study aimed to determine the role of granulocyte colony-stimulating factor in H-Ras-induced malignant progression of human breast epithelial cells. Here, we show that G-CSF plays a crucial role in H-Ras-induced MCF10A cell invasion and migration. The siRNA-mediated knockdown of G-CSF significantly reduced H-Ras-induced matrix metalloproteinase (MMP)-2 expression, as well as invasion/migration, suggesting the functional significance of G-CSF in the invasive phenotype of human breast cells. Importantly, the induction of G-CSF expression conferred the invasive/migratory phenotypes to MCF10A cells with up-regulation of MMP-2 and activation of Rac1, MKK3/6, p38 MAPK, Akt, and ERKs. Knockdown of Rac1 by siRNA significantly inhibited MMP-2 upregulation and invasiveness of G-CSF MCF10A cells, demonstrating that G-CSF-induced MMP-2 upregulation and invasive phenotype is mediated by Rac1. Using human breast tissues and sera from breast cancer patients, we further demonstrate that the expression level of G-CSF is strongly correlated with pathologically-diagnosed breast cancer. These data provide a molecular basis for the crucial role of G-CSF in promoting invasiveness of human breast epithelial cells.  相似文献   

2.
Tumor cell invasion and metastasis are often associated with matrix metalloproteinases (MMPs), among which MMP-2 and MMP-9 are of central importance. We previously showed that H-Ras, but not N-Ras, induced invasion of MCF10A human breast epithelial cells in which the enhanced expression of MMP-2 was involved. MMP-2 is produced as a latent pro-MMP-2 (72 kDa) to be activated resulting the 62 kDa active MMP-2. The present study investigated if H-Ras and/or N-Ras induces pro-MMP-2 activation of MCF10A cells when cultured in two-dimensional gel of type I collagen. Type I collagen induced activation of pro-MMP-2 only in H-Ras MCF10A cells but not in N-Ras MCF10A cells. Induction of active MMP-2 by type I collagen was suppressed by blocking integrin alpha2, indicating the involvement of integrin signaling in pro-MMP-2 activation. Membrane-type (MT)1-MMP and tissue inhibitor of metalloproteinase (TIMP)-2 were up-regulated by H-Ras but not by N-Ras in the type I collagen-coated gel, suggesting that H-Ras-specific up-regulation of MT1-MMP and TIMP-2 may lead to the activation of pro-MMP-2. Since acquisition of pro-MMP-2 activation can be associated with increased malignant progression, these results may help understanding the mechanisms for the cell surface matrix-degrading potential which will be crucial to the prognosis and therapy of breast cancer metastasis.  相似文献   

3.
The goal of the present study is to unveil the gene expression profile specific to the biological processes of human breast epithelial cell invasion and migration using an MCF10A model genetically engineered to constitutively activate the H-ras or N-ras signaling pathway. We previously showed that H-Ras, but not N-Ras, induces MCF10A cell invasion/migration, whereas both H-Ras and N-Ras induce cell proliferation and phenotypic transformation. Thus, these cell lines provide an experimental system to separate the gene expression profile associated with cell invasion apart from cell proliferation/transformation. Analysis of whole human genome microarray revealed that 412 genes were differentially expressed among MCF10A, N-Ras MCF10A, and H-Ras MCF10A cells and hierarchical clustering separated 412 genes into four clusters. We then tested whether S100A8 and S100A9, two of the genes which are most highly up-regulated in an H-Ras-specific manner, play a causative role for H-Ras-mediated MCF10A cell invasion and migration. Importantly, small interfering RNA-mediated knockdown of S100A8/A9 expression significantly reduced H-Ras-induced invasion/migration. Conversely, the induction of S100A8/A9 expression conferred the invasive/migratory phenotype to parental MCF10A cells. Furthermore, we provided evidence of signaling cross-talk between S100A8/A9 and the mitogen-activated protein kinase signaling pathways essential for H-Ras-mediated cell invasion and migration. Taken together, this study revealed S100A8/A9 genes as candidate markers for metastatic potential of breast epithelial cells. Our gene profile data provide useful information which may lead to the identification of additional potential targets for the prognosis and/or therapy of metastatic breast cancer.  相似文献   

4.
5.
There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.  相似文献   

6.
Internalization of H-Ras from the cell surface onto endomembranes through vesicular endocytic pathways may play a significant role(s) in regulating the outcome of Ras signaling. However, the identity of Ras-associated subcellular vesicles and the means by which Ras localize to these internal sites remain elusive. In this study, we show that H-Ras is absent from endosomes initially derived from a clathrin-dependent endocytic pathway. Instead, both oncogenic H-Ras-61L and wild type H-Ras (basal or EGF-stimulated) bind Arf6-associated clathrin-independent endosomes and vesicles of the endosomal-recycling center (ERC). K-Ras4B-12V can also be internalized via Arf6 endosomes, and the C-terminal tails of both H-Ras and K-Ras4B are sufficient to mediate localization of GFP chimeras to Arf6-associated vesicles. Interestingly, little Raf-1 was found on these Arf6-associated endosomes even when active H-Ras was present. Instead, endogenous Raf-1 distributed primarily on EEA1-containing vesicles, suggesting that this H-Ras effector, although accessible for H-Ras interaction on the plasma membrane, appears to separate from its regulator during early stages of endocytosis. The discrete and dynamic distribution of Ras pathway components with spatio-temporal complexity may contribute to the specificity of Ras:effector interaction.  相似文献   

7.
Degradation of collagenous extracellular matrix by collagenase 1 (also known as matrix metalloproteinase 1 [MMP-1]) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, chronic ulcers, and tumor invasion and metastasis. Here, we have investigated the role of distinct mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-1 gene expression. The activation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2 (designated ERK1,2) pathway by oncogenic Ras, constitutively active Raf-1, or phorbol ester resulted in potent stimulation of MMP-1 promoter activity and mRNA expression. In contrast, activation of stress-activated c-Jun N-terminal kinase and p38 pathways by expression of constitutively active mutants of Rac, transforming growth factor beta-activated kinase 1 (TAK1), MAPK kinase 3 (MKK3), or MKK6 or by treatment with arsenite or anisomycin did not alone markedly enhance MMP-1 promoter activity. Constitutively active MKK6 augmented Raf-1-mediated activation of the MMP-1 promoter, whereas active mutants of TAK1 and MKK3b potently inhibited the stimulatory effect of Raf-1. Activation of p38 MAPK by arsenite also potently abrogated stimulation of MMP-1 gene expression by constitutively active Ras and Raf-1 and by phorbol ester. Specific activation of p38alpha by adenovirus-delivered constitutively active MKK3b resulted in potent inhibition of the activity of ERK1,2 and its upstream activator MEK1,2. Furthermore, arsenite prevented phorbol ester-induced phosphorylation of ERK1,2 kinase-MEK1,2, and this effect was dependent on p38-mediated activation of protein phosphatase 1 (PP1) and PP2A. These results provide evidence that activation of signaling cascade MKK3-MKK3b-->p38alpha blocks the ERK1,2 pathway at the level of MEK1,2 via PP1-PP2A and inhibits the activation of MMP-1 gene expression.  相似文献   

8.
9.
Ras proteins (H-, N-, and K-Ras) operate as molecular switches in signal transduction cascades controlling cell proliferation, differentiation, or apoptosis. The interaction of Ras with its effectors is mediated by the effector-binding loop, but different data about Ras location to plasma membrane subdomains and new roles for some docking/scaffold proteins point to signaling specificities of the different Ras proteins. To investigate the molecular mechanisms for these specificities, we compared an effector loop mutation (P34G) of three Ras isoforms (H-, N-, and K-Ras4B) for their biological and biochemical properties. Although this mutation diminished the capacity of Ras proteins to activate the Raf/ERK and the phosphatidylinositol 3-kinase/AKT pathways, the H-Ras V12G34 mutant retained the ability to cause morphological transformation of NIH 3T3 fibroblasts, whereas both the N-Ras V12G34 and the K-Ras4B V12G34 mutants were defective in this biological activity. On the other hand, although both the N-Ras V12G34 and the K-Ras4B V12G34 mutants failed to promote activation of the Ral-GDS/Ral A/PLD and the Ras/Rac pathways, the H-Ras V12G34 mutant retained the ability to activate these signaling pathways. Interestingly, the P34G mutation reduced specifically the N-Ras and K-Ras4B in vitro binding affinity to Ral-GDS, but not in the case of H-Ras. Thus, independently of Ras location to membrane subdomains, there are marked differences among Ras proteins in the sensitivity to an identical mutation (P34G) affecting the highly conserved effector-binding loop.  相似文献   

10.
11.
Ras activation is critical for T-cell development and function, but the specific roles of the different Ras isoforms in T-lymphocyte function are poorly understood. We recently reported T-cell receptor (TCR) activation of ectopically expressed H-Ras on the the Golgi apparatus of T cells. Here we studied the isoform and subcellular compartment specificity of Ras signaling in Jurkat T cells. H-Ras was expressed at much lower levels than the other Ras isoforms in Jurkat and several other T-cell lines. Glutathione S-transferase-Ras-binding domain (RBD) pulldown assays revealed that, although high-grade TCR stimulation and phorbol ester activated both N-Ras and K-Ras, low-grade stimulation of the TCR resulted in specific activation of N-Ras. Surprisingly, whereas ectopically expressed H-Ras cocapped with the TCRs in lipid microdomains of the Jurkat plasma membrane, N-Ras did not. Live-cell imaging of Jurkat cells expressing green fluorescent protein-RBD, a fluorescent reporter of GTP-bound Ras, revealed that N-Ras activation occurs exclusively on the Golgi apparatus in a phospholipase Cgamma- and RasGRP1-dependent fashion. The specificity of N-Ras signaling downstream of low-grade TCR stimulation was dependent on the monoacylation of the hypervariable membrane targeting sequence. Our data show that, in contrast to fibroblasts stimulated with growth factors in which all three Ras isoforms become activated and signaling occurs at both the plasma membrane and Golgi apparatus, Golgi-associated N-Ras is the critical Ras isoform and intracellular pool for low-grade TCR signaling in Jurkat T cells.  相似文献   

12.
Growth factor signaling is implicated in the regulation of lens cell proliferation and differentiation during development. Activation of growth factor receptor tyrosine kinases is known to activate Ras proteins, small GTP-binding proteins that function as part of the signal transduction machinery. In the present study, we examined which classical Ras genes are expressed in lens cells during normal development and whether expression of an activated version of Ras is sufficient to induce either lens cell proliferation or fiber cell differentiation in transgenic mice. In situ hybridization showed H-Ras, K-Ras and N-Ras are ubiquitously expressed in all cells of the embryonic (E13.5) eye, with N-Ras showing the highest level of expression. The expression level of N-Ras decreases during later stages of embryonic development, and is nearly undetected in postnatal day 21 lenses. To generate transgenic mice, a constitutively active H-Ras mutant was linked to a chimeric regulatory element containing the mouse alphaA-crystallin promoter fused to the chick delta1-crystallin lens enhancer element. In the lenses of the transgenic mice, the transgene was expressed in both lens epithelial and fiber cells. Expression of activated Ras was sufficient to stimulate lens cell proliferation but not differentiation, implying that alternative or additional signal transduction pathways are required to induce fiber cell differentiation.  相似文献   

13.
The E-cadherin-based adherens junction (AJ) is essential for organogenesis of epithelial tissues including the liver, although the regulatory mechanism of AJ formation during development remains unknown. Using a primary culture system of fetal hepatocytes in which oncostatin M (OSM) induces differentiation, we show here that OSM induces AJ formation by altering the subcellular localization of AJ components including E-cadherin and catenins. By retroviral expression of dominant-negative forms of signaling molecules, Ras was shown to be required for the OSM-induced AJ formation. Fetal hepatocytes derived from K-Ras knockout (K-Ras-/-) mice failed to form AJs in response to OSM, whereas AJ formation was induced normally by OSM in mutant hepatocytes lacking both H-Ras and N-Ras. Moreover, the defective phenotype of K-Ras-/- hepatocytes was restored by expression of K-Ras, but not by H-Ras and N-Ras. Finally, pull-down assays using the Ras-binding domain of Raf1 demonstrated that OSM directly activates K-Ras in fetal hepatocytes. These results indicate that K-Ras specifically mediates cytokine signaling for formation of AJs during liver development.  相似文献   

14.
Ras signalling on the endoplasmic reticulum and the Golgi   总被引:1,自引:0,他引:1  
Current models evoke the plasma membrane (PM) as the exclusive platform from which Ras regulates signalling. We developed a fluorescent probe that reports where and when Ras is activated in living cells. We show that oncogenic H-Ras and N-Ras engage Raf-1 on the Golgi and that endogenous Ras and unpalmitoylated H-Ras are activated in response to mitogens on the Golgi and endoplasmic reticulum (ER), respectively. We also demonstrate that H-Ras that is restricted to the ER can activate the Erk pathway and transform fibroblasts, and that Ras localized on different membrane compartments differentially engages various signalling pathways. Thus, Ras signalling is not limited to the PM, but also proceeds on the endomembrane.  相似文献   

15.
After translation, Ras proteins undergo a series of modifications at their C-termini. This post-translational C-terminal processing is essential for Ras to become functional, but it remains unknown whether and how Ras C-terminal processing is regulated. Here we show that the C-terminal processing and subsequent plasma membrane localization of H-Ras as well as the activation of the downstream signaling pathways by H-Ras are prevented by JNK inhibition. Conversely, JNK activation by ultraviolet irradiation resulted in promotion of C-terminal processing of H-Ras. Furthermore, increased cell density promoted C-terminal processing of H-Ras most likely through an autocrine/paracrine mechanism, which was also blocked under JNK-inhibited condition. Ras C-terminal processing was sensitive to JNK inhibition in the case of H- and N-Ras but not K-Ras, and in a variety of cell types. Thus, our results suggest for the first time that Ras C-terminal processing is a regulated mechanism in which JNK is involved.  相似文献   

16.
The p38 MAPK signal transduction pathway plays an important role in inflammatory and stress responses. MAPKK6 (MKK6), a dual specificity protein kinase, is a p38 activator. Activation of the MKK6-p38 pathway is kept in check by multiple layers of regulations, including autoinhibition, dimerization, scaffold proteins, and Lys-63-linked polyubiquitination. However, the mechanisms underlying deactivation of MKK6-p38, which is crucial for maintaining the magnitude and duration of signal transduction, are not well understood. Lys-48-linked ubiquitination, which marks substrates for proteasomal degradation, is an important negative posttranslational regulatory machinery for signal pathway transduction. Here we report that the accumulation of F-box only protein 31 (FBXO31), a component of Skp1·Cul1·F-box protein E3 ligase, negatively regulated p38 activation in cancer cells upon genotoxic stresses. Our results show that FBXO31 binds to MKK6 and mediates its Lys-48-linked polyubiquitination and degradation, thereby functioning as a negative regulator of MKK6-p38 signaling and protecting cells from stress-induced cell apoptosis. Taken together, our findings uncover a new mechanism of deactivation of MKK6-p38 and substantiate a novel regulatory role of FBXO31 in stress response.  相似文献   

17.
18.
19.
Transforming growth factor-beta (TGF-beta) is a potent inducer of collagenase-3 (MMP-13) gene expression in human gingival fibroblasts, and this requires activation of the p38 mitogen-activated protein kinase pathway. Here, we have constructed recombinant adenoviruses harboring genes for hemagglutinin-tagged Smad2, Smad3, and Smad4 and used these in dissecting the role of Smads, the signaling mediators of TGF-beta, in regulation of endogenous MMP-13 gene expression in human gingival fibroblasts. Adenoviral expression of Smad3, but not Smad2, augmented the TGF-beta-elicited induction of MMP-13 expression. In addition, adenoviral gene delivery of dominant negative Smad3 blocked the TGF-beta-induced MMP-13 expression in gingival fibroblasts. Co-expression of Smad3 with constitutively active MKK3b and MKK6b, the upstream activators of p38, resulted in nuclear translocation of Smad3 in the absence of TGF-beta and in induction of MMP-13 expression. The induction of MMP-13 expression by Smad3 and constitutively active mutants of MKK3b or MKK6b was blocked by specific p38 inhibitor SB203580 and by the dominant negative form of p38alpha. These results show that TGF-beta-induced expression of human MMP-13 gene in gingival fibroblasts is dependent on the activation of two distinct signaling pathways (i.e. Smad3 and p38alpha). In addition, these findings provide evidence for a novel type of cross-talk between Smad and p38 mitogen-activated protein kinase signaling cascades, which involves activation of Smad3 by p38alpha.  相似文献   

20.
The p38 pathway provides negative feedback for Ras proliferative signaling   总被引:15,自引:0,他引:15  
Ras activates three mitogen-activated protein kinases (MAPKs) including ERK, JNK, and p38. Whereas the essential roles of ERK and JNK in Ras signaling has been established, the contribution of p38 remains unclear. Here we demonstrate that the p38 pathway functions as a negative regulator of Ras proliferative signaling via a feedback mechanism. Oncogenic Ras activated p38 and two p38-activated protein kinases, MAPK-activated protein kinase 2 (MK2) and p38-related/activated protein kinase (PRAK). MK2 and PRAK in turn suppressed Ras-induced gene expression and cell proliferation, whereas two mutant PRAKs, unresponsive to Ras, had little effect. Moreover, the constitutive p38 activator MKK6 also suppressed Ras activity in a p38-dependent manner whereas arsenite, a potent chemical inducer of p38, inhibited proliferation only in a tumor cell line that required Ras activity. MEK was required for Ras stimulation of the p38 pathway. The p38 pathway inhibited Ras activity by blocking activation of JNK, without effect upon ERK, as evidenced by the fact that PRAK-mediated suppression of Ras-induced cell proliferation was reversed by coexpression of JNKK2 or JNK1. These studies thus establish a negative feedback mechanism by which Ras proliferative activity is regulated via signaling integrations of MAPK pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号