首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adhesion of polymorphonuclear leukocytes (PMNs) to vascular endothelial cells (EC) is an early and fundamental event in acute inflammation. This process requires the regulated expression of molecules on both the EC and PMN. EC stimulated with histamine or thrombin coexpress two proadhesive molecules within minutes: granule membrane protein 140 (GMP-140), a member of the selectin family, and platelet-activating factor (PAF), a biologically active phospholipid. Coexpression of GMP-140 and PAF is required for maximal PMN adhesion and the two molecules act in a cooperative fashion. The component of adhesion mediated by EC-associated PAF requires activation of CD11/CD18 integrins on the PMN and binding of these heterodimers to counterreceptors on the EC. GMP-140 also binds to a receptor on the PMN; however, it tethers the PMN to the EC without requiring activation of CD11/CD18 integrins. This component of the adhesive interaction is blocked by antibodies to GMP-140 or by GMP-140 in the fluid phase. Experiments with purified GMP-140 indicate that binding to its receptor on the PMN does not directly induce PMN adhesiveness but that it potentiates the CD11/CD18-dependent adhesive response to PAF by a mechanism that involves events distal to the PAF receptor. Tethering of the PMN to the EC by GMP-140 may also be required for efficient interaction of PAF with its receptor on the PMN. These observations define a complex cell recognition system in which tethering of PMNs by a selectin, GMP-140, facilitates juxtacrine activation of the leukocytes by a signaling molecule, PAF. The latter event recruits the third component of the adhesive interaction, the CD11/CD18 integrins.  相似文献   

2.
Preincubation of pulmonary microvascular endothelial cells (PMVECs) with platelet-activating factor (PAF) for 3.5 h increased the adhesion rate of polymorphonuclear leukocytes (PMNs) to PMVECs from 57.3% to 72.8% (p < 0.01). Preincubation of PMNs with PAF also increased PMN-PMVEC adhesion rate. All-trans retinoic acid (RA) blocked the adherence of untreated PMNs to PAF-pretreated PMVECs but not the adherence of PAF-pretreated PMNs to untreated PMVECs. PAF increased the expression of intercellular adhesion molecule-1 (ICAM-1) and E-selection (ELAM-1) on PMVECs, PMN chemotaxis to zymosan-activated serum and histamine, and PMN aggregation and the release of acid phosphatase from PMNs. Co-incubation of RA inhibited PAF-induced PMN aggregation, the release of acid phosphatase from PMNs, and PMN chemotaxis to zymosan-activated serum and histamine while the expression of ICAM-1 and ELAM-1 did not change. Our results suggest that RA can be used to ameliorate PMN-mediated inflammation.  相似文献   

3.
Lipopolysaccharides and triacyl-cysteine-modified proteins of Gram-negative and positive organisms are potent endotoxins. Animal models show that the receptor for platelet-activating factor (PAF) is responsible for many of the deleterious effects of endotoxin, where regulated, localized PAF production localizes the inflammatory response. In contrast, biologically active analogs of PAF (PAF-like lipids) are generated by oxidative attack on phospholipids by chemical reactions that are unregulated and unlocalized. The identity and distribution of the PAF receptor ligand in endotoxemia is unknown. We found human polymorphonuclear leukocytes (PMNs) were a significant source of PAF receptor agonists after stimulation by either class of endotoxin. Production of PAF receptor agonists required that the PMN adhere to a surface, and adhesion (and therefore accumulation of PAF-like bioactivity) in response to endotoxic stimulation was delayed for several minutes. PAF-like oxidized phospholipids were found by mass spectroscopy, but biosynthetic PAF accounted for most of the phospholipid agonists arising from endotoxic stimulation. A significant portion of the PAF made by PMNs was secreted, in contrast to its near complete retention by other inflammatory cells. Endotoxic stimulation induced a respiratory burst with the production of superoxide and the formation and shedding of microparticles. Free and microparticle-bound PAF appeared in the media, and blocking microvesiculation with calpeptin blocked PAF release. The released material activated platelets, and platelets co-aggregated with endotoxin-stimulated PMNs. Adherent PMNs therefore behave differently than suspended cells and are a significant source of free PAF after endotoxin exposure. Leukocytes can couple endotoxic challenge to the widespread circulatory and inflammatory effects of endotoxin.  相似文献   

4.
This study evaluated whether glutamine (GLN) concentration was related to endothelial surface molecule expression and the migration of polymorphonuclear neutrophils (PMNs) through endothelial cells (ECs) stimulated by arsenic. Human umbilical vein endothelial cells (HUVECs) and PMNs were treated with different GLN concentrations (0, 300, 600 and 1000 microM) for 24 h. After that, we stimulated HUVECs for 3 h with 0.5 microM arsenic, and PMNs were allowed to transmigrate to ECs for 2 h. HUVEC surface expressions of cell adhesion molecules and integrin (CD11b) and interleukin (IL)-8 receptor expressions on PMNs were measured. The transendothelial migration of PMNs was also analyzed. The results showed that cell adhesion molecule (CAM) and integrin expressions in arsenic groups were higher than in those without arsenic. Among the arsenic groups, the expression of CAMs on ECs and CD11b, and IL-8 receptor on PMNs was lowest with 0 microM compared with the other GLN concentrations. Vascular CAM-1 on ECs and CD11b on PMN expression were higher with 300 microM than with 600 and 1000 microM GLN. IL-8 secretions from ECs and PMNs were higher with 300 muM than with 600 and 1000 microM GLN, and this was consistent with the expression of the IL-8 receptor on PMNs. Polymorphonuclear neutrophil transmigration was significantly higher with 300 muM GLN than with other GLN concentrations. These results suggest that ECs and PMNs were activated after arsenic stimulation. Cell adhesion molecule expressions on ECs and PMNs were suppressed in the absence of GLN. A low GLN concentration comparable to catabolic conditions resulted in higher adhesion molecule expression and greater transendothelial migration of neutrophils. Glutamine administration at levels similar to or higher than physiological concentrations reduced IL-8 and adhesion molecule expression; PMN transmigration was also decreased after stimulation with arsenic.  相似文献   

5.
The amount of sialic acid on the surface of the neutrophil (PMN) influences its ability to interact with other cells. PMN activation with various stimuli mobilizes intracellular sialidase to the plasma membrane, where it cleaves sialic acid from cell surfaces. Because enhanced PMN adherence, spreading, deformability, and motility each are associated with surface desialylation and are critical to PMN diapedesis, we studied the role of sialic acid on PMN adhesion to and migration across pulmonary vascular endothelial cell (EC) monolayers in vitro. Neuraminidase treatment of either PMN or EC increased adhesion and migration in a dose-dependent manner. Neuraminidase treatment of both PMNs and ECs increased PMN adhesion to EC more than treatment of either PMNs or ECs alone. Moreover, neuraminidase treatment of ECs did not change surface expression of adhesion molecules or release of IL-8 and IL-6. Inhibition of endogenous sialidase by either cross-protective antineuraminidase antibodies (45.5% inhibition) or competitive inhibition with pseudo-substrate (41.2% inhibition) decreased PMN adhesion to ECs; the inhibitable sialidase activity appeared to be associated with activated PMNs. Finally, EC monolayers preincubated with activated PMNs became hyperadhesive for subsequently added resting PMNs, and this hyperadhesive state was mediated through endogenous PMN sialidase activity. Blocking anti-E-selectin, anti-CD54 and anti-CD18 antibodies decreased PMN adhesion to tumor necrosis factor-activated ECs but not to PMN-treated ECs. These data implicate desialylation as a novel mechanism through which PMN-EC adhesion can be regulated independent of de novo protein synthesis or altered adhesion molecule expression. The ability of activated PMNs, through endogenous sialidase activity, to render the EC surface hyperadherent for unstimulated PMNs may provide for rapid amplification of the PMN-mediated host response.  相似文献   

6.
We have characterized the mechanisms by which thrombin enhances neutrophil leukocyte (PMN) adhesion to human endothelial cells in vitro. Thrombin rapidly and transiently increased PMN adhesion by an action on the endothelial cells. The transience of the response was due to at least two factors: desensitization of the endothelial cell responsiveness to thrombin in the continued presence of the agonist; and the lability (t1/2 less than 15 min) of the effector molecules expressed by the endothelium. Experiments with exogenous platelet-activating factor (PAF) and with PAF antagonists demonstrated that PAF production, although it may facilitate the enhanced PMN adhesion seen in response to thrombin, is not sufficient to explain the reaction. By using a variety of antibodies directed against cell surface ligands, and comparing adhesion of PMN to endothelium and to protein-coated surfaces, we deduce that several endothelial ligands not previously reported as playing a role in PMN adhesion are involved in these interactions. Of particular interest was the finding that antibodies recognizing two thrombin-regulated endothelial cell surface ligands, GMP-140 and the CD63-related Ag, both inhibited adhesion of PMN to thrombin- or LPS-pretreated endothelium. We conclude that thrombin acts to enhance PMN adhesion to endothelium at least in part by transiently altering the conformation or level of expression of these ligands.  相似文献   

7.
Platelet-activating factor (PAF) is a phospholipid mediator of inflammation that is synthesized by several human cell types including polymorphonuclear leukocytes (PMN). We examined the synthesis and release of PAF by stimulated human PMN under several conditions, assayed by the incorporation of [3H]acetate into PAF and by bioassay. PAF synthesis was induced by calcium ionophore A23187 (IoA), opsonized zymosan (OpsZ), and N-formyl-methionyl-leucyl-phenylalanine (FMLP) with the relative order of potency IoA much greater than OpsZ greater than FMLP. A variety of other agonists, including phorbol myristate acetate, an activator of protein kinase C and of PMN functional responses, did not stimulate PAF synthesis. PAF synthesis by PMN in response to IoA, OpsZ, and FMLP was concentration- and time-dependent but release of the phospholipid was not: little PAF (1 to 10%) was released from PMN in suspension regardless of the total amount produced, the agonist, its concentration, the time of incubation, or the concentration of extracellular albumin. This was also the case with functionally altered neutrophils that had been "primed" with cytochalasin B or lipopolysaccharide or that had adhered to surfaces. PAF synthesis was tightly coupled with leukotriene B4 production by adherent PMN as well as by neutrophils in suspension, supporting the hypothesis that the two lipid autacoids may be derived from a common precursor. However, PAF synthesis could be dissociated from aggregation and surface adhesion, indicating that it is not absolutely required for these responses of activated PMN. The total amount of PAF that accumulated, but not the percentage that was released, was altered in adherent PMN compared to cells in suspension. These experiments demonstrate that PAF production and its subsequent processing by human neutrophils are highly regulated events. PAF synthesis is associated with PMN activation, but it is not a requisite for early adhesive responses of neutrophils. Because little of the PAF produced by stimulated PMN is released from the cells, it appears that PAF has an intracellular role in PMN function and/or that it may have novel intercellular effects that do not require release into the fluid phase.  相似文献   

8.
The role of platelet-activating factor (PAF) in heterotypic cell to cell interactions in a rabbit neutrophil-platelet mixture model was investigated. Platelets were exposed to each of three chemotactic agonists: PAF, leukotriene B4 (LTB4), or FMLP. Only PAF stimulated aggregation, [3H]serotonin secretion, and cytosolic Ca2+ mobilization in platelets alone. However, platelets were stimulated by LTB4 and FMLP in the presence of neutrophils. This neutrophil-dependent platelet activation was blocked by pretreatment of platelets with PAF receptor antagonists, and was prevented by desensitization of platelets to PAF. Furthermore, the time-course of platelet activation showed a positive correlation with PAF production by neutrophils stimulated with either LTB4 or FMLP. The PAF-mediated neutrophil-platelet interaction was dependent on direct cell to cell contact, as demonstrated by experiments in which the majority of newly formed PAF was neutrophil associated (rather than released). Platelet activation did not occur when the neutrophil-platelet mixture was not stirred, minimizing cell to cell contact, or when platelets were challenged with a cell-free supernatant prepared from neutrophils activated with LTB4 or FMLP. Finally, the neutrophil-platelet interaction was abolished by SC-49992, a peptidomimetic of the fibrinogen binding sequence Arg-Gly-Asp-Phe, indicating a Arg-Gly-Asp-specific recognition mechanism. Our results demonstrate that neutrophil-generated PAF plays a crucial role in neutrophil-dependent platelet activation in this model system. This type of intercellular signaling event may be important in certain inflammatory or thrombotic processes.  相似文献   

9.
Reactive oxygen species do not activate isolated neutrophils, yet in vivo, such oxidants promote their adhesion to, and subsequent migration through, the vascular wall. We show human endothelial cells exposed to t-butylhydroperoxide shed large, sealed membrane vesicles that contained potent neutrophil agonists. This activity migrated on TLC like platelet-activating factor (PAF). Since neutrophils have a receptor for this phospholipid, which recognizes its unique characteristics including the short sn-2 acetyl residue, we examined the effect of PAF receptor antagonists and PAF acetylhydrolase on this activity. Structurally unrelated PAF receptor antagonists blocked neutrophil stimulation by vesicular phospholipids, and digestion with PAF acetylhydrolase, which is specific for short sn-2 residues, destroyed this activity. However, metabolic labeling, inhibition of synthesis, phospholipase A1 digestion, and high performance liquid chromatographic studies demonstrated that the vesicles did not contain PAF. Instead, the bioactivity migrated on high performance liquid chromatography like the phospholipids generated by oxidative fragmentation of synthetic arachidonoyl phosphatidylcholine that we have shown previously (Smiley, P. L., Stremler, K. E., Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11104-11110) to stimulate neutrophils through their receptor for PAF. Thus, peroxide treatment of endothelial cells fragments cellular phosphatidylcholines, forming novel PAF-like phospholipids, and induces the shedding of membrane vesicles that contain these bioactive phospholipids.  相似文献   

10.
The behavior of platelet-activating factor (PAF) produced in stimulated human polymorphonuclear leukocytes (PMN) was investigated in the presence of serum under conditions close to those existing in vivo. When the cells were stimulated in the presence of the serum obtained from a PAF acetylhydrolase (PAF-AH)-deficient Japanese subject, over 60% of synthesized PAF was detected in the extracellular medium by bioassay, scintillation proximity RIA and selected ion monitoring/gas chromatography/mass spectrography analysis. The release of PAF from PMN after stimulation with FMLP and A23187 was also observed in the presence of normal serum treated with acid to inactivate PAF-AH. The heterogeneity of the molecular species of extracellular PAF was similar to that of intracellular PAF produced in stimulated PMN in the presence of PAF-AH-deficient serum, ruling out the possibility that a specific molecular species of PAF was preferentially released from the cells in the presence of the serum. As these data suggested the occurrence of PAF-releasing factor(s) in the serum, an attempt was made to partially purify this factor from PAF-AH-deficient serum and acid-treated normal serum by ammonium sulfate fractionation and column chromatography with DEAE-Cellulofine and Sepharose CL-6B. The molecular mass of PAF-releasing factor revealed on a TSK gel G3000 SW HPLC column was 240 kDa, which was different from that of albumin. The binding assay, newly developed for this study, revealed that the PAF-binding activity of PAF-releasing factor is stronger than that of albumin, and that the PAF-releasing factor forms a complex with PAF at low concentration (10(-9) M). PAF bound to this factor was difficult to be hydrolyzed by serum PAF-AH. On the other hand, the PAF/PAF-releasing factor complex had aggregatory activity toward washed rabbit platelets. These observations suggest that certain protein(s) releases and carries the PAF newly synthesized by PMN in blood plasma/serum. Thus it appears that PAF functions as an autacoid in vivo, along with other mediators.  相似文献   

11.
Endothelial cell prostacyclin production induced by activated neutrophils   总被引:1,自引:0,他引:1  
A bovine aortic endothelial cell (EC) line released prostacyclin (greater than 1 pmol/10(+5) EC cells) when incubated with fMet-Leu-Phe (FMLP)-stimulated rat and human neutrophils (PMNs). This prostaglandin (PG) I2 was shown to come from the ECs and not from the PMNs by radioactive, high-performance liquid chromatography, and immunochemical criteria. Both FMLP-stimulated rat peritoneal and human peripheral PMNs as well as their stimulated cell-free supernatants and unstimulated sonicates could elicit the release of PGI2 from ECs. Since phorbol myristate acetate stimulated PMN adherence but elicited little PGI2 release from ECs, the PGI2 stimulation in ECs is unrelated to PMN adhesion. The addition of catalase and superoxide dismutase to FMLP-stimulated PMNs enhanced rather than reduced PGI2 formation, indicating that activated oxygen products of the PMN are not responsible for the induction of PGI2. Incubation of ECs with leukotriene (LT) B4, LTC4, or LTD4 did not trigger PGI2 release nor did aspirin pretreatment of the PMNs reduce the PGI2 induction. These data suggest that arachidonic acid metabolites of the PMNs were not responsible for the PGI2 induction. Available data indicates that the PMN factor that stimulates PGI2 from ECs is either released concomitantly with the azurophilic granules or is closely related to this event.  相似文献   

12.
The coagulation protein thrombin has been shown to stimulate multiple endothelial-cell (EC) functions, including production of platelet-derived growth factor and of platelet-activating factor (PAF), and neutrophil adhesion. We have found that thrombin causes increased binding of monocytic cells (U937 cells and normal human monocytes) to cultured EC of various species. Maximum adhesion of monocytes to pig aortic EC occurred 6 h after thrombin treatment and remained elevated through 24 h. Stimulation of adherence by bovine alpha-thrombin was half-maximal at 15 units/ml, and reached a plateau at 50 units/ml. Catalytically inactive thrombin (phenylmethanesulphonyl fluoride-treated) had no effect on monocyte adhesion to EC. Heparin, but not the endotoxin antagonist polymyxin B, suppressed the stimulation of adhesion by thrombin without altering basal adhesion. Two lines of evidence suggested that protein kinase C (PKC) was involved in the intracellular signalling to increase monocyte adhesion to EC. First the PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated monocytic-cell adhesion to EC at a dose consistent with stimulation of PKC (half-maximal response at 1-3 nM) and with a time course similar to that for thrombin stimulation (maximal by 4 h). Diacylglycerol, a physiological activator of PKC, also stimulated U937-cell adhesion to EC. Secondly, H7, a PKC inhibitor, completely blocked stimulation of monocyte adhesion to EC by thrombin or PMA. The structural analogue of H7, HA1004, which preferentially inhibits cyclic-AMP- and cyclic-GMP-dependent protein kinases, had no effect on stimulated monocyte adhesion. The PKC inhibitor also blocked the stimulation of monocyte adhesion to EC by interleukin-1 and endotoxin, but did not alter the basal level of monocyte binding to unstimulated EC. Thrombin stimulation of monocyte adhesion differed from the reported stimulation of neutrophil adhesion by thrombin in that the latter process reached a maximum in minutes rather than hours. In addition, neither PAF itself nor agents known to stimulate PAF production by EC, such as arachidonate and the Ca2+ ionophore A23187, had any effect on monocyte adhesion. These results demonstrate a PKC-dependent cytokine-like action of the coagulation protein thrombin in modulating monocytic-cell adhesion to EC, a phenomenon of potential importance in many pathological and physiological processes.  相似文献   

13.
The objectives of this study were to characterize the effects of endothelin (ET)-1 on intestinal mucosal parameters and to assess the contribution of polymorphonuclear leukocytes (PMNs), intercellular adhesion molecule-1 (ICAM-1), and a platelet-activating factor (PAF) to the mucosal dysfunction induced by ET-1. Different concentrations of ET-1 (100, 200, and 400 pmol/kg) were infused into the superior mesenteric artery for 10 min, and tissue samples were obtained 30 min after terminating the infusion. ET-1 administration significantly elevated tissue myeloperoxidase activity, plasma carbonyl content, and tissue chemiluminescence intensity, indicating that ET-1 produces PMN infiltration and oxidant stress. Blood-to-lumen clearance of (51)Cr-EDTA significantly increased after ET-1 infusion (400 pmol/kg). Monoclonal antibodies against ICAM-1 (1A29, 2 mg/kg), antineutrophil serum, and PAF antagonist (WEB-2086, 10 mg/kg) attenuated the mucosal barrier dysfunction induced by ET-1. Overall, our data indicate that ET-1 causes PMN accumulation, oxidant stress, and mucosal dysfunction in the rat small intestine and that ET-1-induced mucosal dysfunction involves a mechanism that includes a role for PMNs, ICAM-1, and PAF.  相似文献   

14.
Monocyte-endothelium interaction is a fundamental process in many acute and chronic inflammatory diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are fish oil-derived alternative (omega-3) precursor fatty acids implicated in the suppression of inflammatory events. We investigated their influence on rolling and adhesion of monocytes to human umbilical vein endothelial cells (HUVEC) under laminar flow conditions in vitro. Exposure of HUVEC to tumor necrosis factor (TNF-alpha) strongly increased 1) surface expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), and E-selectin, 2) platelet-activating factor (PAF) synthesis as assessed by thrombin challenge, and 3) rate of rolling and adhesion of monocytes. Preincubation of HUVEC with EPA or DHA markedly suppressed PAF synthesis, monocyte rolling, and adherence, whereas expression of endothelial adhesion molecules was unchanged. Also, PAF receptor antagonists markedly suppressed the adhesion rate of monocytes, and EPA or DHA revealed no additional inhibitory capacity. In contrast, arachidonic acid partially reversed the effect of the antagonist. We conclude that omega-3 fatty acids suppress rolling and adherence of monocytes on activated endothelial cells in vitro by affecting endothelial PAF generation.  相似文献   

15.
Lysophosphatidylcholine is an abundant component of plasma and oxidized LDL that displays several biological activities, some of which may occur through the platelet-activating factor (PAF) receptor. We find that commercial lysophosphatidylcholine, its alkyl homolog (lyso-PAF), and PAF all induce inflammation in a murine model of pleurisy. Hydrolysis of PAF to lyso-PAF by recombinant PAF acetylhydrolase abolished this eosinophilic infiltration, implying that lyso-PAF should not have displayed inflammatory activity. Saponification of lyso-PAF or PAF acetylhydrolase treatment of lyso-PAF or lysophosphatidylcholine abolished activity; neither lysolipid should contain susceptible sn-2 residues, suggesting contaminants account for the bioactivity. Lyso-PAF and to a lesser extent lysophosphatidylcholine stimulated Ca(2+) accumulation in 293 cells stably transfected with the human PAF receptor, and this was inhibited by specific PAF receptor antagonists. Again, treatment of lyso-PAF or lysophosphatidylcholine with recombinant PAF acetylhydrolase, a nonselective phospholipase A(2), or saponification of lyso-PAF destroyed the PAF-like activity, a result incompatible with lyso-PAF or lysophosphatidylcholine being the actual agonist.We conclude that neither lyso-PAF nor lysophosphatidylcholine is a PAF receptor agonist, nor are they inflammatory by themselves. We suggest that PAF or a PAF-like mimetic accounts for inflammatory effects of lysophosphatidylcholine and lyso-PAF.  相似文献   

16.
Cell-free preparations of ionophore-stimulated peritoneal rat polymorphonuclear neutrophils (PMNs) incubated with 1-(N-dansyl-11-amino-1-undecyl)-sn-glycerol-3-phosphorylcholine (dansyllyso-PAF) converted this fluorescent lyso ether lipid into two different classes of products. In the absence of acetyl-CoA 1-(N-dansyl-11-amino-1-undecyl)-2-long chain acyl-sn-glycerol-3-phosphorylcholine (dansylalkyl-2-acyl-GPC) was the only identified new fluorescent phospholipid. In the presence of acetyl-CoA an additional new product, 1-(N-dansyl-11-amino-1-undecyl)-2-acetyl-sn-glycerol-3-phosphorylcholine (dansyl-PAF), was formed. The formation of dansyl-PAF in PMN homogenates was only transient with a maximum after about 4 min. When PMN homogenates were incubated with dansyl-PAF the formation of dansyllyso-PAF was observed prior to the formation of dansyl-2-acyl-GPC. Thus, our data indicate that enzymatically formed dansyl-PAF is completely remodeled into dansylalkyl-2-acyl-GPC by the sequential action of PAF acetylhydrolase and CoA-independent transacylase. These results demonstrate that peritoneal rat PMNs contain lyso-PAF acetyltransferase, PAF acetylhydrolase, and CoA-independent transacylase and that fluorophore-labeled ether lipids provide an easy means to assay enzymes which catalyze important enzymatic reactions involved in the biosynthesis and remodeling of platelet-activating factor.  相似文献   

17.
Alveolar macrophages (AM) were studied for their capability to release mediators involved in modulation of neutrophil (PMN) functions. Initial responses were induced by sulphite. Supernatants obtained from canine, human and rat AM pre-treated with sulphite in concentrations of 0.1–2 mmol/L enhanced the respiratory burst of canine, human and rat PMN, measured by lucigenin-dependent chemiluminescence (CL). This PMN-stimulating activity exhibited platelet-activating factor (PAF)-like properties, as indicated by desensitization of the PAF receptor, inhibition with PAF antagonists WEB 2086 and CV 3988, and the kinetic CL response like PAF after chloroform extraction of supernatants inhibitable by PAF antagonist CV 3988. These results indicate that AM are triggered by sulphite to release mediators that activate the respiratory burst of PMN, primarily via the PAF receptor. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
The platelet-activating factor acetylhydrolases are enzymes that were initially characterized by their ability to hydrolyze platelet-activating factor (PAF). In human plasma, PAF acetylhydrolase (EC 3.1.1.47) circulates in a complex with low density lipoproteins (LDL) and high density lipoproteins (HDL). This association defines the physical state of PAF acetylhydrolase, confers a long half-life, and is a major determinant of its catalytic efficiency in vivo. The lipoprotein-associated enzyme accounts for all of the PAF hydrolysis in plasma but only two-thirds of the protein mass. To characterize the enzyme-lipoprotein interaction, we employed site-directed mutagenesis techniques. Two domains within the primary sequence of human PAF acetylhydrolase, tyrosine 205 and residues 115 and 116, were important for its binding to LDL. Mutation or deletion of those sequences prevented the association of the enzyme with lipoproteins. When residues 115 and 116 from human PAF acetylhydrolase were introduced into mouse PAF acetylhydrolase (which normally does not associate with LDL), the mutant mouse PAF acetylhydrolase associated with lipoproteins. To analyze the role of apolipoprotein (apo) B100 in the formation of the PAF acetylhydrolase-LDL complex, we tested the ability of PAF acetylhydrolase to bind to lipoproteins containing truncated forms of apoB. These studies indicated that the carboxyl terminus of apoB plays a key role in the association of PAF acetylhydrolase with LDL. These data on the molecular basis of the PAF acetylhydrolase-LDL association provide a new level of understanding regarding the pathway for the catabolism of PAF in human blood.  相似文献   

19.
20.
In early studies we found that IL-1 stimulated endothelial cells (EC) to produce platelet-activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Inasmuch as this phospholipid has a wide range of biologic activities, including polymorphonuclear leukocytes (PMN) aggregation and chemotaxis, we investigated whether EC-associated PAF could contribute to IL-1-induced PMN adhesion to EC. When four selective PAF antagonists were added to IL-1-stimulated EC during the PMN adhesion assay, adhesion was reduced in a concentration-related way. Similarly, pre-treatment of PMN with PAF before the adhesion assay to induce desensitization to this phospholipid reduced PMN adhesion to IL-1-treated EC. However, comparing the time course and the concentration response curve of IL-1-induced EC adhesivity and PAF synthesis, we found that increased EC adhesivity to PMN required a shorter incubation time and lower concentration of IL-1 to become apparent than PAF production. When acetyl-coenzyme A was added to EC cultures at a concentration that raised PAF synthesis by 60%, no significant increase in PMN adhesion was observed. In addition, after 9 to 10 doublings, the EC ability to synthesize PAF decreased by 85 to 90%, whereas IL-1-induced EC adhesivity to PMN was only slightly diminished. When IL-1-alpha and -beta were tested on EC, we observed that both were equally active in promoting PMN adhesion to EC but only the alpha-form was able to stimulate PAF production. When PMN were seeded on IL-1-treated EC, increased amounts of PAF were detected even when EC were fixed; in addition, the inhibitory effect of a PAF antagonist was evident also in these conditions. Overall these results indicate that IL-1-induced PAF production by EC does not significantly contribute to PMN adhesion to them. We hypothesize that the observed inhibitory effect of PAF antagonists and PAF desensitization of PMN might be directed at PAF produced by PMN themselves during adhesion to IL-1-treated EC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号