首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hexavalent chromium, which is a mutagen and carcinogen, was efficiently reduced by Streptomyces griseus. This activity was associated with the cell. Cr6+ reduction by free as well as immobilized cells was studied: cells in PVA-alginate had the highest (100%) Cr6+ removal efficiency in 24 h with reduction rates similar to free cells. Immobilized cells completely reduced 25 mg Cr6+ l−1 in 24 h. PVA-alginate immobilized cells could be reused four times to completely reduce 25 mg Cr6+ l−1 in 24 h each time. Chromate in a simulated effluent containing Cu2+, Mg2+, Mn2+ and Zn2+ was completely reduced by PVA-alginate immobilized cells within 9 h.  相似文献   

2.
Membrane-bound penicillin-binding proteins (PBPs) of two Streptomyces griseus strains that sporulate well in liquid and solid medium have been investigated during the course of their life-cycle. The PBP patterns were analyzed by sodium dodecylsulphate polyacrylamide-gel electrophoresis and fluorography. One strain (No. 45 H) has only a single band (mol wt: 27,000) in early log phase, and two additional PBPs of higher mol wt (69,000 and 80,000) in the late log phase. The other strain (No. 2682) possessed two bands with mol wts 27,000 and 38,000 which did not change during its vegetative phase. In strain No. 2682, a new PBP with a mol wt of 58,000 appeared in spore membranes while one of those (mol wt 38,000) present in mycelial membranes disappeared. Our results suggest that appearance of the new PBP in the spore may be associated with the sporulation process. The major PBP band (mol wt: 27,000) present in all stages of the life cycle of these strains, may be characteristic of S. griseus while the other PBPs reflect certain stages of the life cycle. A new method was developed for the production of spore protoplasts by consecutive enzymatic treatments.Abbreviation PBP penicillin-binding protein  相似文献   

3.
Malate synthase is an essential metabolic enzyme of the glyoxylate bypass that makes possible the replenishment of carbon intermediates to cells grown on acetate. A polymerase chain reaction (PCR)-based molecular screening investigation of full-length malate synthase genes from Streptomyces spp. was initiated by our group. To this end, consensus primers were designed based on known streptomycete malate synthase sequences and successful amplification was obtained for Streptomyces griseus, S. fimbriatus and S. lipmanii. The putative full-length malate synthase gene from S. griseus was subsequently cloned, sequenced and expressed. Sequence analysis of this gene showed very high identity with other streptomycete malate synthase genes. Furthermore, high malate synthase activity was detected after heterologous expression in Escherichia coli, thus demonstrating successfully the rapid cloning and functional verification of a streptomycete malate synthase gene. Growth studies of S. griseus revealed that malate synthase activity was induced by the presence of acetate, which is a two-carbon source. Interestingly, the activity peaked during late growth phase when the biomass was declining, suggesting that the enzyme may have a late role in metabolism.  相似文献   

4.
The advantage of usingStreptomyces griseus HUT 6037 in the production of chitinase or chitosanase is that the organism is capable of hydrolyzing amorphous or crystal-line chitin and chitosan according to the type of the substrate used. We investigated the effects of the enzyme induction time and chitin sources, CM-chitosan and deacetylated chitosan (degree of deacetylation 75–99%), on production of chitosanase. We found that this strain accumulated chitosanase when cells were grown in the culture medium containing chitosanaceous substrates instead of chitinaceous substrates. The highest chitosanase activity was obtained at 4 days of cultivation with 99% deacetylated chitosan. Soluble chitosan (53% deacetylated chitosan) was found to induce chitinase as well as chitosanase. The specific activities of chitinase and chitosanase were 0.91 and 1.33 U/mg protein at 3 and 5 days, respectively. From the study of the enzymatic digestibility of various degrees of deacetylated chitosan, it was found that (GlcN)3, (GlcN)4 and (GlcN)5 were produced during the enzymatic hydrolysis reaction. The results of this study suggested that the sugar composition of (GlcN)3 was homogeneous and those of (GlcN)4 and (GlcN)5 were heterogeneous.  相似文献   

5.
An addition of cycloheximide to cycloheximide-producing Streptomyces griseus cultures resulted in reductions in the production rate and in the conversion of sugar into cycloheximide. In situ cycloheximide adsorption was observed to enhance: total cycloheximide titers; productivities; and the conversion of sugar to cycloheximide. During the secondary metabolite-producing phase, sugar consumption was observed to be linearly dependent on cycloheximide productivity. From this analysis a true product yield and maintenance coefficient were estimated to be 0.08 g cycloheximide/g glucose and 0.028 g glucose/g cell-h, respectively. The sixfold difference between this true product yield and a theoretical value obtained from knowledge of the biosynthetic pathway is discussed. Since the maintenance sugar requirement for cycloheximide production is large, stimulation of biosynthesis through in situ adsorption significantly increases the overall efficiency of sugar conversion to this secondary metabolite.  相似文献   

6.
Chitinase C (ChiC) from Streptomyces griseus HUT6037 was the first glycoside hydrolase family 19 chitinase that was found in an organism other than higher plants. An N-terminal chitin-binding domain and a C-terminal catalytic domain connected by a linker peptide constitute ChiC. We determined the crystal structure of full-length ChiC, which is the only representative of the two-domain chitinases in the family. The catalytic domain has an alpha-helix-rich fold with a deep cleft containing a catalytic site, and lacks three loops on the domain surface compared with the catalytic domain of plant chitinases. The chitin-binding domain is an all-beta protein with two tryptophan residues (Trp59 and Trp60) aligned on the surface. We suggest the binding mechanism of tri-N-acetylchitotriose onto the chitin-binding domain on the basis of molecular dynamics (MD) simulations. In this mechanism, the ligand molecule binds well on the surface-exposed binding site through two stacking interactions and two hydrogen bonds and only Trp59 and Trp60 are involved in the binding. Furthermore, the flexibility of the Trp60 side-chain, which may be involved in adjusting the binding surface to fit the surface of crystalline chitin by the rotation of chi2 angle, is shown.  相似文献   

7.
Trypsin (EC 3.4.21.4) is the protease of choice for proteome analysis using mass spectrometry of peptides in sample digests. In this work, trypsin from Streptomyces griseus (SGT) was purified to homogeneity from pronase. The enzyme was evaluated in in-gel digestion of protein standards followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) analyses of the digests. We recognized a remarkable cleavage performance of SGT. The number of produced and matching tryptic peptides was higher than in the case of commonly used bovine trypsin (BT) and allowed us to obtain higher identification scores in database searches. Interestingly, SGT was found to also generate nonspecific peptides whose sequencing by MALDI-TOF/TOF tandem mass spectrometry (MS/MS) revealed a partial F-X, Y-X, and W-X cleavage specificity. To suppress autolysis, either arginine or arginine plus lysine residues in SGT were modified by chemical reagents. In consequence, the autolytic pattern of SGT was reduced significantly, but specific activity dropped dramatically. As demonstrated by relative quantification of peptides at different times, SGT is more stable at 37 °C than is its bovine counterpart. We conclude that SGT represents a convenient alternative for proteomic applications involving protein digestion. Moreover, parallel digestions of sample aliquots by SGT and BT provide the possibility of combining partially different results (unique matching peptides) to improve protein identification.  相似文献   

8.
Accumulating data have shown that the metabolites with a -butyrolactone ring functions as an autoregulatory factor or a microbial hormone for the expression of various phenotypes not only in a variety ofStreptomyces spp. but also in the distantly related bacteria. A-factor, as a representative of this type of autoregulators, triggers streptomycin biosynthesis and cellular differentiation inStreptomyces griseus. A model for the A-factor regulatory cascade on the basis of recent work is as follows. At an early step in the A-factor regulatory relay, the positive A-factor signal is first received by an A-factor receptor protein that is comparable in every aspect to eukaryotic hormone receptors, and then, via one or more regulatory steps, transmitted to an A-factor-responsive protein that binds to the upstream activation sequence of thestrR gene, a regulatory gene in the streptomycin biosynthetic gene cluster. The StrR protein thus induced appears to activate the other streptomycin biosynthetic genes. This review summarizes the characteristics of A-factor as a microbial hormone and the A-factor regulatory relay leading to streptomycin production.  相似文献   

9.
Daptomycin is a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus. Cubicin (daptomycin-for-injection) was approved in 2003 by the FDA to treat skin and skin structure infections caused by Gram-positive pathogens. Daptomycin is particularly significant in that it represents the first new natural product antibacterial structural class approved for clinical use in three decades. The daptomycin gene cluster contains three very large genes (dptA, dptBC, and dptD) that encode the nonribosomal peptide synthetase (NRPS). The related cyclic lipopeptide A54145 has four NRPS genes (lptA, lptB, lptC, and lptD), and calcium dependent antibiotic (CDA) has three (cdaPS1, cdaPS2, and cdaPS3). Mutants of S. roseosporus containing deletions of one or more of the NRPS genes have been trans-complemented with dptA, dptBC, and dptD by inserting these genes under the control of the ermEp* promoter into separate conjugal cloning vectors containing phiC31 or IS117 attachment (attP int) sites; delivering the plasmids into S. roseosporus by conjugation from Escherichia coli; and inserting the plasmids site-specifically into the chromosome at the corresponding attB sites. This trans-complementation system was used to generate subunit exchanges with lptD and cdaPS3 and the recombinants produced novel hybrid molecules. Module exchanges at positions D: -Ala(8) and D: -Ser(11) in the peptide have produced additional novel derivatives of daptomycin. The approaches of subunit exchanges and module exchanges were combined with amino acid modifications of Glu at position 12 and natural variations in lipid side chain starter units to generate a combinatorial library of antibiotics related to daptomycin. Many of the engineered strains produced levels of novel molecules amenable to isolation and antimicrobial testing, and most of the compounds displayed antibacterial activities.  相似文献   

10.
Like most extracellular bacterial proteases, Streptomyces griseus protease B (SGPB) and alpha-lytic protease (alphaLP) are synthesized with covalently attached pro regions necessary for their folding. In this article, we characterize the folding free energy landscape of SGPB and compare it to the folding landscapes of alphaLP and trypsin, a mammalian homolog that folds independently of its zymogen peptide. In contrast to the thermodynamically stable native state of trypsin, SGPB and alphaLP fold to native states that are thermodynamically marginally stable or unstable, respectively. Instead, their apparent stability arises kinetically, from unfolding free energy barriers that are both large and highly cooperative. The unique unfolding transitions of SGPB and alphaLP extend their functional lifetimes under highly degradatory conditions beyond that seen for trypsin; however, the penalty for evolving kinetic stability is remarkably large in that each factor of 2.4-8 in protease resistance is accompanied by a cost of ~10(5) in the spontaneous folding rate and ~5-9 kcal/mole in thermodynamic stability. These penalties have been overcome by the coevolution of increasingly effective pro regions to facilitate folding. Despite these costs, kinetic stability appears to be a potent mechanism for developing native-state properties that maximize protease longevity.  相似文献   

11.
A study was performed to investigate the ability of Streptomyces griseus to cause experimental mycetoma in the skin and in the foot pads of mice. The lesions appeared as palpable subcutaneous nodules discharging pale yellow cheesy pus and granules of S. griseus. The inoculated foot pads of the mice also developed nodular lesions which later became oedematous with bone destruction and fibrosis.  相似文献   

12.
To investigate the role of Glu196 of leucine aminopeptidase from Streptomyces griseus (SGAP) in SGAP activation by calcium and substrate specificity, we constructed E196X SGAP by saturation mutagenesis. Most mutations led to the abrogation of SGAP activation by calcium, and substitution with Lys led to a marked increase in activity toward Asp-p-nitroanilide (pNA) and a decrease in that toward Lys-pNA. A similar result was obtained from the investigation using non-calcium-activated enzyme from Streptomyces septatus (SSAP). These results indicate that Glu196 of SGAP is associated with the environment around the substrate binding site besides its role in SGAP activation by calcium.  相似文献   

13.
14.
A method for the analysis of total DNA of Streptomyces glaucescens is described. The relevant steps are (a) extraction and purification of DNA, (b) restriction of DNA samples with type II restriction enzymes, (c) one dimensional separation of restriction fragments by agarose gel electrophoresis. A typical banding pattern was obtained for each wild type strain, independant of growth conditions or age of the culture. Mutant strains exhibited in most cases the same banding pattern as the parent wild type strain. Only in one specific mutant class a fragment of about 9 megadalton was missing.  相似文献   

15.
Successful genetic transformation of plants requires non-chimeric selection of transformed tissues and their subsequent regeneration. With rare exceptions, most transformation protocols still rely heavily on antibiotics for selecting transgenic cells that contain an antibiotic-degrading selectable marker gene. Here, the morphogenic capacity of in-vitro expiants of chrysanthemum and tobacco stems and leaves (control and transgenic) changed with the addition of aminoglycoside antibiotics (AAs). In a test of 6 AAs, phytotoxicity occurred at concentrations of 10 to 25 and 50 to 100 ng ml.−1 in chrysanthemum and tobacco expiants, respectively. Light conditions as well as expiant source and size also had significant effects. The use of transverse thin cell layers (tTCLs), in conjunction with high initial AA selection levels, supported the greatest regeneration of transgenic material (adventitious shoots or callus) and the lowest number of escapes. Flow-cytometric analyses revealed no endoduplication in chrysanthemum, even at high AA levels. However, this phenomenon was observed in tobacco calli (8C or more), even at low AA concentrations (i.e., 5 to 10 μg mL-1).  相似文献   

16.
Summary An actinomycete strain, which could produce an extracellular poly(vinyl alcohol) (PVA)-degrading enzyme, was isolated from a PVA-contaminated soil sample using PVA as the sole carbon source. The strain was identified as Streptomyces venezuelae according to the whole-nucleotide-sequence analysis of 16S rDNA, the morphological and the physiological characteristics. The strain produced 120 U/l extracellular PVA-degrading enzyme when PVA was used as the sole carbon source. When glucose was used as the sole carbon source, however, the extracellular enzyme activity was very low (12 U/l). This is the first report showing that an actinomycete strain can produce a PVA-degrading enzyme.  相似文献   

17.
The genome sequence of Streptomyces coelicolor A3(2) contains 51 putative lipase and esterase genes mostly of unknown function. The gene estB (locus SCO 6966) was expressed as a His-tagged protein in E. coli. Esterase B was active at low temperatures exerting its maximum activity at 30°C and retaining more than 25% of its activity at 4°C. The optimum pH was 8–8.5. The enzyme was active against short synthetic p-nitrophenylesters (C2–C10) with maximum activity towards the acetate ester (C2). The esterase was tested on 13 series of racemic esters of potential interest for the synthesis of chiral pharmaceutical compounds. 4 of the series were substrates and a modest degree of enantioselectivity was observed (enantiomeric ratios of 1.1–1.9).  相似文献   

18.
A strong fibrin-specific fibrinolytic enzyme was purified from the cell-free spent culture broth of a thermophilic organism, Streptomyces megasporus SD5. The strain could produce 150 mg crude protein per litre of spent broth, with a specific activity of 80 IU (Plough units) per milligram, within 18 h of incubation at 55 °C in glucose yeast/extract/peptone (GYP) medium, pH 8.0. For production of the enzyme, the strain could utilize different carbon and nitrogen sources with a C:N ratio of ∼ 1:2. The enzyme was stable at a broad range of pH ranging from 5 to 9, and highly thermostable with 50% activity after storage at 60 °C for 6 months. The enzyme belonged to the serine endopeptidase group. In vitro clot lysis revealed that the enzyme was active at 37 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Microbial reduction of toxic Cr6+ to the less toxic Cr3+ is potentially a useful bioremediation process. Among the matrices tested for whole cell immobilization of an efficient chromate-reducing Streptomyces griseus strain, PVA-alginate was the most effective and was used for reduction of Cr(VI) in a bioreactor. Cr6+ reduction efficiency decreased as Cr6+ was increased from 2 to 12 mg l−1 but increased with an increase in biomass concentration. However, increasing the flow rate from 2 to 8 ml h−1 did not significantly affect Cr6+ reduction. The reduction was faster in simulated effluent than in synthetic medium and complete removal of 8 mg Cr6+ l−1 from effluent and synthetic medium occurred in 2 and 12 h, respectively. Our results indicate that immobilized S. griseus cells could be applied for the large-scale bioremediation of chromate-containing effluents and wastewaters.  相似文献   

20.
The efficiency of Streptomyces melanosporofaciens strain EF-76, a geldanamycin producer, and of chitosan, a polymer derived from chitin that elicits plant defense mechanisms, to protect potato tubers against common scab was evaluated under both controlled and field conditions (years 2000 and 2001). S. melanosporofaciens EF-76 reduced disease incidence in the greenhouse assay and in the 2001 field assay. EF-76 also reduced symptom severity on potato tubers grown under field conditions. Chitosan provided a protective effect against S. scabies,the causal agent of potato common scab during the 2000 field assay by reducing both disease incidence and symptom severity. Combination of S. melanosporofaciensEF-76 and chitosan ensures a level of protection that was at least equivalent to the protection conferred by one of the two products used alone. In some instances, an additive effect of protection was observed when both products were used in combination. Combination of S. melanosporofaciensEF-76 and of chitosan thus represents a promising method of biocontrol against common scab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号