首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Researchers studying nonhuman primate vocal repertoires suggest that convergent environmental, social, and motivational factors account for intra- and interspecific vocal variation. We provide a detailed overview of the vocal repertoire of white-faced capuchins, including acoustic analyses and contextual information of vocal production and vocal usage by different age-sex classes in social interactions. The repertoire is a mixture of graded and discrete vocalizations. In addition, there is general support for structural variation in vocalizations with changes in arousal level. We also identified several combined vocalizations, which might represent variable underlying motivations. Lastly, by including data on the social contexts and production of vocalizations by different age-sex classes, we provide preliminary information about the function of vocalizations in social interactions for individuals of different rank, age, and sex. Future studies are necessary to explore the function of combined vocalizations and how the social function of vocalizations relate to their acoustic structure, because social use of vocalizations may play an important role in shaping vocal evolution.  相似文献   

2.
Many nonhuman primates produce food-associated vocalizations upon encountering or ingesting particular food. Concerning the great apes, only food-associated vocalizations of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) have been studied in detail, providing evidence that these vocalizations can be produced flexibly in relation to a variety of factors, such as the quantity and quality of food and/or the type of audience. Only anecdotal evidence exists of eastern (Gorilla beringei) and western gorillas (Gorilla gorilla) producing food-associated vocalizations, termed singing or humming. To enable a better understanding of the context in which these calls are produced, we investigated and compared the vocal behavior of two free-ranging groups of western lowland gorillas (Gorilla g. gorilla) at Mondika, Republic of Congo. Our results show that (a) food-associated call production occurs only during feeding and not in other contexts; (b) calling is not uniformly distributed across age and sex classes; (c) calls are only produced during feeding on specific foods; and (d) normally just one individual gives calls during group feeding sessions, however, certain food types elicit simultaneous calling of two or more individuals. Our findings provide new insight into the vocal abilities of gorillas but also carry larger implications for questions concerning vocal variability among the great apes. Food-associated calls of nonhuman primates have been shown to be flexible in terms of when they are used and who they are directed at, making them interesting vocalizations from the viewpoint of language evolution. Food-associated vocalizations in great apes can offer new opportunities to investigate the phylogenetic development of vocal communication within the primate lineage and can possibly contribute novel insights into the origins of human language.  相似文献   

3.
The vocal repertoires of nonhuman primates have long been thought to be invariable across populations and not to result from vocal learning. However, increasing evidence suggests that learning does influence vocal production in nonhuman primates, and that several species modify the structure of their calls in response to social or environmental influences. Vocal usage learning refers to the process whereby an individual learns in which circumstances to produce a certain call type, whereas vocal production learning refers to the process in which signals get modified as the result of individual experiences. Common marmosets (Callithrix jacchus) show socially mediated vocal plasticity as adults and during vocal development. This propensity to engage in simple forms of vocal production learning (accommodation) should produce population-level differences in call structure. To test this prediction, we compared the vocalizations of three captive populations of common marmosets. We analyzed the acoustic structure of 1337 phee calls, 461 trills, and 3611 food calls and compared them with a permutated discriminant function analysis. We found that all call types differed significantly between the three populations, and 76–98% of the calls were correctly classified. As physical differences in body mass and environmental differences between colonies could not explain the call differences, we conclude that vocal accommodation is the most likely explanation for the differences in call structure. This will allow us to further investigate the role and importance of vocal learning in a species increasingly used to study vocal learning and language evolution.  相似文献   

4.
There is little evidence of vocal learning in nonhuman primates despite the well-documented abilities found in avian species. We describe the vocal repertoire of five bonobos (Pan paniscus), four of which live in a seminatural environment. The fifth subject, Kanzi, has been reared with humans during the course of language training. The data indicated that the four bonobos living in a seminatural environment exhibit a variety of species-typical vocalizations. In addition to producing all the species-typical vocalization, Kanzi produced four structurally unique vocalizations that were not heard among the other subjects. These data suggest that Kanzi has learned vocalizations that are novel due to his unique rearing experience. Discussion is focused on the flexibility of vocal communication and vocal comprehension inPan paniscus.  相似文献   

5.
Vocal communication in nonhuman primates receives considerable research attention, with many investigators arguing for similarities between this calling and speech in humans. Data from development and neural organization show a central role of affect in monkey and ape sounds, however, suggesting that their calls are homologous to spontaneous human emotional vocalizations while having little relation to spoken language. Based on this evidence, we propose two principles that can be useful in evaluating the many and disparate empirical findings that bear on the nature of vocal production in nonhuman and human primates. One principle distinguishes production-first from reception-first vocal development, referring to the markedly different role of auditory-motor experience in each case. The second highlights a phenomenon dubbed dual neural pathways, specifically that when a species with an existing vocal system evolves a new functionally distinct vocalization capability, it occurs through emergence of a second parallel neural pathway rather than through expansion of the extant circuitry. With these principles as a backdrop, we review evidence of acoustic modification of calling associated with background noise, conditioning effects, audience composition, and vocal convergence and divergence in nonhuman primates. Although each kind of evidence has been interpreted to show flexible cognitively mediated control over vocal production, we suggest that most are more consistent with affectively grounded mechanisms. The lone exception is production of simple, novel sounds in great apes, which is argued to reveal at least some degree of volitional vocal control. If also present in early hominins, the cortically based circuitry surmised to be associated with these rudimentary capabilities likely also provided the substrate for later emergence of the neural pathway allowing volitional production in modern humans.  相似文献   

6.
7.
Human spoken language and nonhuman primate vocalization systems have traditionally been regarded as qualitatively different from one another with respect to their semanticity and the way in which individuals acquire and utilize these signals. However, recent studies of the vocal behaviors of both captive and free-ranging monkeys and apes suggest that this dichotomy may not be unequivocal. We examined the vocalizations produced by a linguistically-competent adult male bonobo (Pan paniscus) named Kanzi. We analyzed his vocalizations during communicative interactions with humans in order to determine whether they vary systematically according to the semantic context in which they are produced. We determined semantic contexts based upon a vocalization's co-occurrence with predefined behavioral correlates. Spectrographic and statistical analyses revealed that acoustic structure is similar among the vocalizations that occurred within a specific semantic context and structural differences are evident between the vocalizations produced in different contexts. The results provide evidence that, during communicative interactions with humans, Kanzi modulates his vocal output on both the temporal and spectral levels.  相似文献   

8.
9.
Songbirds are one of the few groups of animals that learn the sounds used for vocal communication during development. Like humans, songbirds memorize vocal sounds based on auditory experience with vocalizations of adult “tutors”, and then use auditory feedback of self-produced vocalizations to gradually match their motor output to the memory of tutor sounds. In humans, investigations of early vocal learning have focused mainly on perceptual skills of infants, whereas studies of songbirds have focused on measures of vocal production. In order to fully exploit songbirds as a model for human speech, understand the neural basis of learned vocal behavior, and investigate links between vocal perception and production, studies of songbirds must examine both behavioral measures of perception and neural measures of discrimination during development. Here we used behavioral and electrophysiological assays of the ability of songbirds to distinguish vocal calls of varying frequencies at different stages of vocal learning. The results show that neural tuning in auditory cortex mirrors behavioral improvements in the ability to make perceptual distinctions of vocal calls as birds are engaged in vocal learning. Thus, separate measures of neural discrimination and behavioral perception yielded highly similar trends during the course of vocal development. The timing of this improvement in the ability to distinguish vocal sounds correlates with our previous work showing substantial refinement of axonal connectivity in cortico-basal ganglia pathways necessary for vocal learning.  相似文献   

10.
The acquisition of linguistic competency from more experienced social partners is a fundamental aspect of human language. However, there is little evidence that non-human primates learn to use their vocalizations from social partners. Captive chimpanzees (Pan troglodytes) produce idiosyncratic vocal signals that are used intentionally to capture the attention of a human experimenter. Interestingly, not all apes produce these sounds, and it is unclear what factors explain this difference. We tested the hypothesis that these attention-getting (AG) sounds are socially learned via transmission between mothers and their offspring. We assessed 158 chimpanzees to determine if they produced AG sounds. A significant association was found between mother and offspring sound production. This association was attributable to individuals who were raised by their biological mother-as opposed to those raised by humans in a nursery environment. These data support the hypothesis that social learning plays a role in the acquisition and use of communicative vocal signals in chimpanzees.  相似文献   

11.
Recent work on human vocal production demonstrates that certain irregular phenomena seen in human pathological voices and baby crying result from nonlinearities in the vocal production system. Equivalent phenomena are quite common in nonhuman mammal vocal repertoires. In particular, bifurcations and chaos are ubiquitous aspects of the normal adult repertoire in many primate species. Here we argue that these phenomena result from properties inherent in the peripheral production mechanism, which allows individuals to generate highly complex and unpredictable vocalizations without requiring equivalently complex neural control mechanisms. We provide examples from the vocal repertoire of rhesus macaques, Macaca mulatta, and other species illustrating the different classes of nonlinear phenomena, and review the concepts from nonlinear dynamics that explicate these calls. Finally, we discuss the evolutionary significance of nonlinear vocal phenomena. We suggest that nonlinear phenomena may subserve individual recognition and the estimation of size or fluctuating asymmetry from vocalizations. Furthermore, neurally ‘cheap’ unpredictability may serve the valuable adaptive function of making chaotic calls difficult to predict and ignore. While noting that nonlinear phenomena are in some cases probably nonadaptive by-products of the physics of the sound-generating mechanism, we suggest that these functional hypotheses provide at least a partial explanation for the ubiquity of nonlinear calls in nonhuman vocal repertoires.  相似文献   

12.
《Animal behaviour》1988,36(5):1432-1444
Japanese macaques, Macaca fuscata, were trained with a positive reinforcement operant procedure to discriminate smooth early high and smooth late high coo sounds recorded during Green's (1975) field study of the speices' vocal repertoire. Subjects labelled the various tokens by maintaining contact with a response device for calls from one category and by breaking contact for those of the second call type. After the completion of discrimination training, the generalization of the operant behaviour to novel natural and synthetic vocalizations was measured. Initial generalization tests established that macaques would respond appropriately both to natural vocalizations and to computer-synthesized prototypes representing the smooth early high-smooth late high contrast. In subsequent tests, individual acoustic features were removed from the synthetic prototypes to determine the minimal elements of functional coo sounds. These tests suggested that those sounds are distinguished by the predominant direction of their frequency change which, in turn, is determined by the temporal position of their highest frequency.  相似文献   

13.
The aim of this study was to describe the vocal repertoire of the Ponto‐Caspian goby Neogobius fluviatilis and to compare the acoustic properties of this species with those of other soniferous Mediterranean gobies belonging to the Gobius lineage. Vocalizations and associated behaviours were recorded under controlled aquarium conditions in female and male N. fluviatilis. Sound emission was elicited by means of ‘intruder tests’, using an individual of the same or opposite sex as an intruder, and recording sounds using a hydrophone placed 20 cm from the shelter used as a nest for the resident fish. Five acoustic properties, including spectral and temporal properties, were measured from 13 individuals. The vocal repertoire of the species consisted of sequences of short vocalizations during both agonistic and reproductive intraspecific interactions. The wave form of each sound resolved in a pure sine wave composed of rapidly repeated pulses. Sounds lasted about 200 ms, showing an average fundamental frequency of about 80 Hz. Sound properties did not differ between reproductive and the aggressive contexts, and the general structure of sounds was highly stereotyped. The individual means of three acoustic independent traits characterizing the sounds of seven species of the Gobius lineage, including N. fluviatilis, were then entered in a discriminant function analysis to assess how well species could be differentiated on the basis of acoustics, and their degree of affinities. The results suggested that the pulse repetition rate of the sounds, i.e. the relative tonal/pulsatile nature of the sounds, was the most important property in differentiating the species, and that this trait may contain a high level of phylogenetic signal, as the species producing tonal sounds clustered together, in line with the results of recent molecular phylogenic studies. The results were discussed in light of the geological and phylogeographical events believed to have driven the diversification of European gobies.  相似文献   

14.
15.
The production learning of vocalizations by manipulation of the sound production organs to alter the physical structure of sound has been demonstrated in only a few mammals. In this natural experiment, we document the vocal behaviour of two juvenile killer whales, Orcinus orca, separated from their natal pods, which are the only cases of dispersal seen during the three decades of observation of their populations. We find mimicry of California sea lion (Zalophus californianus) barks, demonstrating the vocal production learning ability for one of the calves. We also find differences in call usage (compared to the natal pod) that may reflect the absence of a repertoire model from tutors or some unknown effect related to isolation or context.  相似文献   

16.
Laughter is a universally produced vocal signal that plays an important role in human social interaction. Researchers have distinguished between spontaneous and volitional laughter, but no empirical work has explored possible acoustic and perceptual differences. If spontaneous laughter is an honest signal of cooperative intent (e.g., derived from play breathing patterns), then the ability to mimic these sounds volitionally could have shaped perceptual systems to be attuned to aspects of spontaneous laughs that are harder to fake—features associated with phylogenetically older vocal control mechanisms. We extracted spontaneous laughs from conversations between friends and volitional laughs elicited by instruction without other provocation. In three perception experiments we found that, 1) participants could distinguish between spontaneous and volitional laughter, 2) when laugh speed was increased (duration decreased 33% and pitch held constant), all laughs were judged as more “real,” with judgment accuracy increasing for spontaneous laughter and decreasing for volitional laughter, and 3) when the laughs were slowed down (duration increased 260% and pitch altered proportionally), participants could not distinguish spontaneous laughs from nonhuman vocalizations but could identify volitional laughs as human-made. These findings and acoustic data suggest that spontaneous and volitional laughs are produced by different vocal systems, and that spontaneous laughter might share features with nonhuman animal vocalizations that volitional laughter does not.  相似文献   

17.
Variation in the avian vocal signals emitted may have a significant impact on species evolution. Vocal divergence in suboscine species like Giant Antshrike (Batara cinerea) may be associated with selective adaptation, since learning has little influence on vocal development and variation in acoustic structure cannot be attributed to learning deviation. Consequently, tracheophone suboscine species are ideal subjects to explore vocal variation, since cultural evolution does not seem to influence vocal variation in this group. Environmental conditions may determine the selection of vocal features because acoustic transmission could be attenuated under certain conditions of temperature, humidity and vegetation cover. Here, we examined vocalizations of Giant Antshrike and assessed possible acoustic variations between two disjunct groups (Andean and Atlantic), correlating the differences to the environmental structure. Univariate and multivariate analysis show temporal and spectral differences between both groups. Andean individuals produce vocalizations with longer duration, faster trill rates, shorter syllable duration and higher frequencies. Environmental features are different between the two populations, and they are correlated to the acoustic structure of vocalizations. Temporal variations arise directly from climatic influence, while spectral divergence could be a secondary effect of morphological adaptation to habitat structure.  相似文献   

18.
Animal communication signals are diverse. The types of sounds that animals produce, and the way that information is encoded in those sounds, not only varies between species but can also vary geographically within a species. Therefore, an understanding of the vocal repertoire at the population level is important for providing insight into regional differences in vocal communication signals. One species whose vocal repertoire has received considerable attention is the bottlenose dolphin. This species is well known for its use of individually distinctive identity signals, known as signature whistles. Bottlenose dolphins use their signature whistles to broadcast their identity and to maintain contact with social companions. Signature whistles are not innate, but are learnt signals that develop within the first few months of an animal’s life. It is therefore unsurprising that studies which have characterized signature whistles in wild populations of bottlenose dolphins have provided evidence of geographic variation in signature whistle structure. Here, we describe the occurrence of signature whistles in a previously unexplored wild population of bottlenose dolphins in Cardigan Bay, Wales. We present the first occurrence of a signature whistle with an ultrasonic fundamental frequency component (>30 kHz), a frequency band that was not thought to be utilized by this species for whistle communication. We also describe the occurrence of an ultrasonic non-signature whistle. Our findings highlight the importance of conducting regional studies in order to fully quantify a species’ vocal repertoire, and call into question the efficacy of those studies that use restricted sampling rates.  相似文献   

19.
20.
Big brown bats form large maternity colonies of up to 200 mothers and their pups. If pups are separated from their mothers, they can locate each other using vocalizations. The goal of this study was to systematically characterize the development of echolocation and communication calls from birth through adulthood to determine whether they develop from a common precursor at the same or different rates, or whether both types are present initially. Three females and their six pups were isolated from our captive breeding colony. We recorded vocal activity from postnatal day 1 to 35, both when the pups were isolated and when they were reunited with their mothers. At birth, pups exclusively emitted isolation calls, with a fundamental frequency range <20 kHz, and duration >30 ms. By the middle of week 1, different types of vocalizations began to emerge. Starting in week 2, pups in the presence of their mothers emitted sounds that resembled adult communication vocalizations, with a lower frequency range and longer durations than isolation calls or echolocation signals. During weeks 2 and 3, these vocalizations were extremely heterogeneous, suggesting that the pups went through a babbling stage before establishing a repertoire of stereotyped adult vocalizations around week 4. By week 4, vocalizations emitted when pups were alone were identical to adult echolocation signals. Echolocation and communication signals both appear to develop from the isolation call, diverging during week 2 and continuing to develop at different rates for several weeks until the adult vocal repertoire is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号