首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different parameters which vary during the leaf development in sunflower plants grown with nitrate (2 or 20 mM) for a 42‐day period have been determined. The plants grown with 20 mM nitrate (N+) showed greater leaf area and specific leaf mass than the plants grown with 2 mM nitrate (N?). The total chlorophyll content decreased with leaf senescence, like the photosynthetic rate. This decline of photosynthetic activity was greater in plants grown with low nitrogen level (N?), showing more pronounced senescence symptoms than with high nitrogen (N+). In both treatments, soluble sugars increased with aging, while starch content decreased. A significant increase of hexose to sucrose ratio was observed at the beginning of senescence, and this raise was higher in N? plants than in N+ plants. These results show that sugar senescence regulation is dependent on nitrogen, supporting the hypothesis that leaf senescence is regulated by the C/N balance. In N+ and N? plants, ammonium and free amino acid concentrations were high in young leaves and decreased progressively in the senescent leaves. In both treatments, asparagine, and in a lower extent glutamine, increased after senescence start. The drop in the (Glu+Asp)/(Gln+Asn) ratio associated with the leaf development level suggests a greater nitrogen mobilization. Besides, the decline in this ratio occurred earlier and more rapidly in N? plants than in N+ plants, suggesting that the N? remobilization rate correlates with leaf senescence severity. In both N+ and N? plants, an important oxidative stress was generated in vivo during sunflower leaf senescence, as revealed by lipid peroxidation and hydrogen peroxide accumulation. In senescent leaves, the increase in hydrogen peroxide levels occurred in parallel with a decline in the activity of antioxidant enzymes. In N+ plants, the activities of catalase and ascorbate peroxidase (APX) increased to reach their highest values at 28 days, and later decreased during senescence, whereas in N? plants these activities started to decrease earlier, APX after 16 days and catalase after 22 days, suggesting that senescence is accelerated in N‐leaves. It is probable that systemic signals, such as a deficit in amino acids or other metabolites associated with the nitrogen metabolism produced in plants grown with low nitrogen, lead to an early senescence and a higher oxidation state of the cells of these plant leaves.  相似文献   

2.
Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves.  相似文献   

3.
The effects of defoliation treatments on plant growth in sunflower (Helianthus annuus) were studied in the field. Four defoliation treatments, 0 (control), 37.4, 56.1 and 93.4% of the total leaf dry weight, were applied to plants that had small third leaves. Decreased leaf weight/whole plant weight (F/W) ratios in defoliated plants rapidly recovered to almost the same ratio as that observed in the control within 12 to 16 days after defoliation according to the degree of defoliation. The mechanism involved in the recovery of the F/W ratio in defoliated plants mainly consisted of three parameters: enhancement of (1) carbon distribution ratios in the leaves, (2) photosynthetic activity in the remaining leaves, and (3) retranslocation of carbon from the stem and/or roots to leaves. Inhibitive effects of defoliation on relative growth rate and net assimilation rate were seen at an early stage, but subsequently both rates became larger in defoliated plants than in controls. Defoliated plants tended to show rapid development and expansion of new leaves, and to show increased specific leaf area and protein synthesis in individual leaves. The sugar content of leaves in defoliated plants was higher than that in controls, while the content in both stem and roots was lower. These responses seem to be advantageous for development of the photosynthetic system. Heights of defoliated plants were clearly depressed according to the degree of defoliation, and this was attributed largely to differences in the elongation rates of the internodes resulting from defoliation.  相似文献   

4.
The relative importance of changes in leaf expansion rate (LER) and leaf conductance (g1) in the control of crop transpiration depends primarily on their sensitivity to soil water deficits. The aim of this paper was to quantify the responses of LER and g1 to soil water deficits in sunflower (Helianthus annuus L.) under conditions of moderate (spring) and high (summer) evaporative demand. Soil water content, g1, and LER were measured in dryland (DRY) and daily-irrigated (WET) crops established on a deep sandy-loam (Typic Xerofluvent) in a Mediterranean environment. There was no difference between g1 of DRY and WET plants (p>0.20) in contrast with a highly significant difference in LER (p<0.001). Even under the harsh conditions of the summer experiment, g1 did not respond to water deficit in a ten-day period in which LER of DRY plants was reduced to approx. 30% of that measured in WET controls. This field study indicates that g1 plays at most a minor role in the control of sunflower transpiration in the pre-anthesis period and confirms the importance of leaf expansion in the regulation of gas exchange of expanding canopies subjected to soil water deficits.  相似文献   

5.
6.
Seedlings of Helianthus annuus L. were grown at an initiallyhigh relative nitrate supply rate (0.27 mol N mol N–1d–1). The supply was subsequently reduced to a low rate(0.04 mol N mol N–1 d–1). The response of leaf areadevelopment to this abrupt decrease in nitrate availabilitywas characterized by following the expansion of the primaryand secondary leaf pairs. The timing of the drop in nitratesupply was when cell division in the epidermis of the primaryleaf pair was largely complete. Reducing the availability ofnitrate had a strong effect on leaf area expansion. The finalleaf size of the primary leaf pair was affected indicating aneffect of nitrate availability on cell expansion. By the endof the experiment the secondary leaf pair was only one-thirdthe area of that on control seedlings. The role of epidermalcell turgor pressure in this growth response was assessed bydirect measurements with a miniature cell pressure probe. Noreduction in cell turgor pressure following the decrease innitrate availability was detected. It is concluded that a reductionin turgor pressure was not responsible for the reduction inleaf area expansion and it is suggested that reduced cell expansionwas due to changes in cell wall properties. Concentrations ofleaf and root abscisic acid increased following the reductionin nitrate availability. Key words: Abscisic acid, cell size, cell turgor pressure, nitrate, nitrogen, relative rate of nitrate supply  相似文献   

7.
All modern domesticated sunflowers can be traced to a single center of domestication in the interior mid-latitudes of eastern North America. The sunflower achenes and kernels recovered from six eastern North American sites predating 3000 b.p. that document the early history of this important crop plant are reanalyzed, and two major difficulties in the interpretation of archaeological sunflower specimens are addressed. First, achenes and kernels obtained from a modern wild sunflower population included in a prior genetic study because of its minimal likelihood for crop-wild gene flow, and its close genetic relationship to domesticated sunflowers, provide a new and more tightly drawn basis of comparison for distinguishing between wild and domesticated achene and kernel specimens recovered from archaeological contexts. Second, achenes and kernels from this modern wild baseline population were carbonized, allowing a direct comparison between carbonized archaeological specimens and a carbonized modern wild reference class, thereby avoiding the need for the various problematic shrinkage correction conversion formulas that have been employed over the past half century. The need for further research on museum collections is underscored, and new research directions are identified.  相似文献   

8.
Composition of lipids from sunflower pollen (Helianthus annuus)   总被引:1,自引:0,他引:1  
The contents of the pollen lipids of the sunflower Helianthus annuus are described. The major component is the seco-triterpene helianyl octanoate, followed by new beta-diketones as second major group of compounds. They exhibit a shorter chain length and often other positions of the functional group compared to already known beta-diketones. Of particular note are the 1-phenyl-beta-diketones, not previously reported from nature. Further lipid classes present are related hydroxyketones and diols. Interestingly, new beta-dioxoalkanoic acids are present in the extracts, which most likely are biogenetic precursors of the diketones. Additionally, we investigated the composition of the pollen coat which resembles the total extract, but lacks the dioxoalkanoic acids and certain estolides.  相似文献   

9.
Removal of the main root system of sunflower ( Helianthus annuus ) initiates adventitious root development on the lower portion of the hypocotyl. The first cytological changes (enlarged nuclei in the interfascicular parenchymatous cells adjacent to the phloem and some cell divisions) are observed 24 h after root excision. On the basis of experiments in which (a) roots, apical buds and various amounts of cotyledonary tissue were removed, (b) cuttings were subjected to various light regimes, (c) benzyladenine oas applied to cotyledons to create an artificial sink, it was concluded that the roots normally produce factors inhibiting to adventitious rooting and might be a sink for stimulatory substances produced in the shoots. The cotyledons seem to be the major source of these stimulators. Application of aqueous and ethanolic extracts of cotyledons and hypocotyls to cuttings promoted adventitious rooting.  相似文献   

10.
11.
12.
Sunflower broomrape (Orobanche cumana Wallr.) is a root holoparasitic angiosperm considered as one of the major constraints for sunflower production in Mediterranean areas. Breeding for resistance is regarded as the most effective, feasible, and environmentally friendly solution to control this parasite. However, the existing sources of genetic resistance are defeated by the continuous emergence of new more virulent races of the parasite. In this work, the interaction between sunflower and O. cumana has been analysed in order to gain insights into the mechanisms involved in resistance. Two sunflower genotypes were selected showing different behaviour against the new race F of O. cumana, HE-39998 (susceptible) and HE-39999 (resistant), and both compatible and incompatible interactions were compared. Pot and Petri dish bioassays revealed that only HE-39998 plants were severely affected, supporting a high number of successfully established broomrapes to mature flowering, whereas in HE-39999 root tubercles were never observed, resistance being associated with browning symptoms of both parasite and host tissues. Histological aspects of the resistance were further investigated. Suberization and protein cross-linking at the cell wall were seen in the resistant sunflower cells in contact with the parasite, preventing parasite penetration and connection to the host vascular system. In addition, fluorescence and confocal laser microscopy (CLM) observations revealed accumulation of phenolic compounds during the incompatible reaction, which is in agreement with these metabolites playing a defensive role during H. annuus-O. cumana interaction.  相似文献   

13.
Drought tolerance of two sunflower (Helianthus annuus L.) genotypes, cultivated cultivar 1114 and interspecific line H. annuus × H. mollis, was studied under laboratory conditions using PEG-6000. Four levels of osmotic stress (?0.4, ?0.6, ?0.8 and ?1.0 MPa) were created and performances were monitored against a control. Physiological and biochemical stress determining parameters such as malondialdechyde (MDA), proline content, and hydrogen peroxide (H2O2) were compared between seedlings of both genotypes. The results indicated that both genotypes have similar responses at four osmotic potentials for all traits studied. All seedling growth parameters such as germination percentage, root length, shoot length, root and shoot dry weight decreased with increasing osmotic stress. MDA, proline, and H2O2 were found to be increased at different osmotic gradients in comparison to control. Cultivar 1114 was less affected than the interspecific line under these stress conditions. The data observed in the experiments revealed that perennial wild H. mollis can hardly be considered to be an excellent candidate of drought tolerance genes.  相似文献   

14.
15.
Mesophyll protoplasts of the cultivated sunflower,Helianthus annuus, have been consistently found not to divide or regenerate calli, despite the efforts of several groups. In the present report, we describe the conditions for donor plant culture, protoplast isolation, and their culture that were suitable for repeated regeneration of green, nodular, vigorously growing calli from isolated sunflower mesophyll protoplasts. The best conditions for protoplast isolation employed the use of both CAYLA cellulase and CAYLA pectinase. Culture conditions were not much different from those established earlier for sunflower hypocotyl protoplasts. The most startling observation was the great variability of division frequencies between experiments even under strictly controlled, identical experimental conditions. This finding points to an important influence of a variable in the physiological state of the donor plant which is difficult to control.  相似文献   

16.
17.
The circadian regulation of leaf hydraulic conductance (Kleaf) was investigated in Helianthus annuus L. (sunflower). Kleaf was measured with an high pressure flow meter during the light and dark period from plants growing at a photoperiod of 12 h. Kleaf was 4.0 e−4 kg s−1 m−2 MPa−1 during the light period (LL) and 30–40% less during the dark period (DL). When photoperiod was inverted and leaves were measured for Kleaf at their subjective light or dark periods, Kleaf adjusted to the new conditions requiring 48 h for increasing from dark to light values and 4 d for the opposite transition. Plants put in continuous dark showed Kleaf oscillating from light to dark values in phase with their subjective photoperiod indicating that Kleaf changes were induced by the circadian clock. Several cuts through the minor veins reduced leaf hydraulic resistance (Rleaf) of both LL and DL to the same value (1.0 e + 3 MPa m2 s kg−1) that equalled the vascular resistance (Rv). The contribution of the non-vascular leaf resistance (Rnv) to Rleaf was of 71.9% in DL and of 58.4% in LL. The dominant Rnv was shown to be reversibly modulated by mercurials, suggesting that aquaporins play a role in diurnal changes of Kleaf.  相似文献   

18.
Summary A reliable protocol for the transformation of cultivated sunflower (Helianthus annuus L.) has been established, based on microprojectile bombardment of half shoot apices in combination with Agrobacterium tumefaciens coculture. Transgenic shoots have been obtained from 5 inbred lines, although transformation efficiencies varied with the genotype. Plants expressing the transgenes could be recovered from up to 7% of the explants. A minority of plants was shown to be chimaeric for expression of ß-glucuronidase activity while most appeared to be uniformly transformed. Genetic segregation was 31 for both ß-glucuronidase and neomycine phospho transferase in some plants, indicating that the respective mother plants were uniformly transformed. Integration of the foreign genes was also shown by Southern analysis.Abbreviations BAP benzyl amino purine - EDTA ethylene diamine tetraacetic acid - GUS ß-glucuronidase - npt II neomycine phospho-transferase II  相似文献   

19.
Li  Cui  Wang  Peng  Lombi  Enzo  Wu  Jingtao  Blamey  F. Pax C.  Fernández  Victoria  Howard  Daryl L.  Menzies  Neal W.  Kopittke  Peter M. 《Plant and Soil》2018,425(1-2):309-319
Plant and Soil - Arabidopsis thaliana is the model plant that is mainly used in studying cellulose and hemicellulose (CH) biosynthesis. Unfortunately, A. thaliana does not associate with mycorrhiza...  相似文献   

20.
Genetic variability for regeneration ability was evaluated by studying direct organogenesis from cotyledons of thirteen genotypes including three cytoplasmic male sterile, three maintenor, three restorer inbred lines, and four F1 hybrids obtained by crosses between some of these inbred lines. The experimental design was a complete randomized block with three replications. A high genetic variability for organogenesis parameters between genotypes was observed in this study. Evidence of cytoplasmic effect and nucleo-cytoplasmic interaction for some of regeneration parameters was observed. The data also showed the importance of additive genetic control for organogenesis parameters in most genotypes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号