首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural differentiation of the nuchal organs during the post-embryonic development ofPygospio elegans is described. The sensory organs are composed of two cell types: ciliated cells and bipolar primary sensory cells, constituting the nuchal ganglion, which is associated with both the sensory epithelium and the brain. Since the sensory neurons are largely integrated into posterolateral parts of the cerebral ganglion, the nuchal organs are primary presegmental structures. The microvilli of the ciliated cells form a cover over the cuticle with a presumed protective function. An extracellular space extends between cuticle and sensory epithelium. The distal dendrites of the sensory cells terminate in sensory bulbs, bearing one modified sensory cilium each that projects into the olfactory chamber, embedded within the secretion of the ciliated cells. During development, the nuchal organs increase in size. This is accompanied by a shift in position, an expansion of the sensory area, and secretory activity of the ciliated cells. The nuchal ganglion differentiates into three nuchal centres forming three distinct sensory areas around the ciliated region. Each nuchal complex reveals two short nuchal nerves comprising the sensory axons, which enter the posterior circumesophageal connective. The sensory cells lying in the brain exhibit neurosecretory activity; the sensory cilia enlarge their surface area by dilating and branching. Nuchal organs accomplish the basic structural adaptions of chemoreceptors and show structural analogies to arthropod olfactory sensilla; thus, there is every reason to suppose chemoreceptor function.  相似文献   

2.
Using retrograde axonal transport of horseradish peroxidase, studies have been made on the thalamic projections in the anterior and posterior parts of the limbic cortex with special reference to exterosensory system projections (visual, auditory and somatic). Projections of the retinorecipient nuclei of the anterior hypothalamus and classic thalamic visual relays (n. geniculatus lateralis dorsalis, n. lateralis posterior, pretectum) were found in the anterior and posterior limbic cortex. There are also inputs from the thalamic relays of the auditory (n. geniculatus medialis) and somatic (n. ventralis posterior) systems in the posterior limbic cortex The data obtained indicate: 1) that sensory supply of the limbic cortex in rats may be realized via direct pathways from sensory thalamic relays; 2) that thalamic sensory supply of the anterior limbic cortex differs from that of the posterior one. In the former, projections of the thalamic relays of the visual, auditory and somatic systems were found, whereas in the posterior cortex only visual system is presented. Topographic organization of the thalamic nuclear areas sending afferents to the anterior limbic cortex differs from that of the posterior limbic cortex.  相似文献   

3.
 We examined the cerebral cortex of five autopsied individuals without neurological and psychiatric diseases by immunohistochemistry using an anti-human recombinant choline acetyltransferase (ChAT) polyclonal antibody and in situ hybridization with 35S-labeled human ChAT riboprobes. The immunohistochemistry detected positive neurons which were medium-sized or large pyramidal neurons located predominantly in layers III and V. The density of such neurons was higher in the motor and secondary sensory areas than in other cortical areas; the immunoreactive neurons in layer V were more densely distributed in the motor area and those in layer III were distributed in the secondary sensory areas. Positively stained, non-pyramidal neurons were observed in the superficial layer of the cingulate gyrus and parahippocampus. No immunoreactive neurons were found in the primary sensory areas. The in situ hybridization detected some neurons with signals for ChAT mRNA in the cerebral cortex, most of which were distributed in layer V of the motor area and in layer III of the secondary visual area. These results indicate that the human cerebral cortex contains cholinergic neurons and displays regional and laminal variations in their distribution. Accepted: 17 November 1998  相似文献   

4.
CD Gilbert  W Li 《Neuron》2012,75(2):250-264
The visual cortex has the capacity for experience-dependent change, or cortical plasticity, that is retained throughout life. Plasticity is invoked for encoding information during perceptual learning, by internally representing the regularities of the visual environment, which is useful for facilitating intermediate-level vision-contour integration and surface segmentation. The same mechanisms have adaptive value for functional recovery after CNS damage, such as that associated with stroke or neurodegenerative disease. A common feature to plasticity in primary visual cortex (V1) is an association field that links contour elements across the visual field. The circuitry underlying the association field includes a plexus of long-range horizontal connections formed by cortical pyramidal cells. These connections undergo rapid and exuberant sprouting and pruning in response to removal of sensory input, which can account for the topographic reorganization following retinal lesions. Similar alterations in cortical circuitry may be involved in perceptual learning, and the changes observed in V1 may be representative of how learned information is encoded throughout the cerebral cortex.  相似文献   

5.
The posterior parietal cortex has long been considered an ''association'' area that combines information from different sensory modalities to form a cognitive representation of space. However, until recently little has been known about the neural mechanisms responsible for this important cognitive process. Recent experiments from the author''s laboratory indicate that visual, somatosensory, auditory and vestibular signals are combined in areas LIP and 7a of the posterior parietal cortex. The integration of these signals can represent the locations of stimuli with respect to the observer and within the environment. Area MSTd combines visual motion signals, similar to those generated during an observer''s movement through the environment, with eye-movement and vestibular signals. This integration appears to play a role in specifying the path on which the observer is moving. All three cortical areas combine different modalities into common spatial frames by using a gain-field mechanism. The spatial representations in areas LIP and 7a appear to be important for specifying the locations of targets for actions such as eye movements or reaching; the spatial representation within area MSTd appears to be important for navigation and the perceptual stability of motion signals.  相似文献   

6.
We studied the responses to sensory stimulation of three diencephalic areas, the central posterior nucleus of the dorsal thalamus, the anterior tuberal nucleus of the hypothalamus, and the preglomerular complex. Units sensitive to acoustic (500 Hz tone burst), hydrodynamic (25 Hz dipole stimulus) and visual (640 nm light flash) stimuli were found in both the central posterior and anterior tuberal nucleus. In contrast, unit responses or large robust evoked potentials confined to the preglomerular complex were not found. In the central posterior nucleus, most units were unimodal. Many units responded exclusively to visual stimulation and exhibited a variety of temporal response patterns to light stimuli. In the anterior tuberal nucleus of the hypothalamus, most units responded to more than one modality and showed a stronger response decrement to stimulus repetitions than units in the central posterior nucleus. Our data suggest that units in the central posterior nucleus are primarily involved in the unimodal processing of sensory information whereas units in the anterior tuberal nucleus of the hypothalamus may be involved in multisensory integration.  相似文献   

7.
8.
The functional logic of cortico-pulvinar connections   总被引:5,自引:0,他引:5  
The pulvinar is an 'associative' thalamic nucleus, meaning that most of its input and output relationships are formed with the cerebral cortex. The function of this circuitry is little understood and its anatomy, though much investigated, is notably recondite. This is because pulvinar connection patterns disrespect the architectural subunits (anterior, medial, lateral and inferior pulvinar nuclei) that have been the traditional reference system. This article presents a simplified, global model of the organization of cortico-pulvinar connections so as to pursue their structure-function relationships. Connections between the cortex and pulvinar are topographically organized, and as a result the pulvinar contains a 'map' of the cortical sheet. However, the topography is very blurred. Hence the pulvinar connection zones of nearby cortical areas overlap, allowing indirect transcortical communication via the pulvinar. A general observation is that indirect cortico-pulvino-cortical circuits tend to mimic direct cortico-cortical pathways: this is termed 'the replication principle'. It is equally apt for certain pairs (or groups) of nearby cortical areas that happen not to connect with each other. The 'replication' of this non-connection is achieved by discontinuities and dislocations of the cortical topography within the pulvinar, such that the associated pair of connection zones do not overlap. Certain of these deformations can be used to divide the global cortical topography into specific sub-domains, which form the natural units of a connectional subdivision of the pulvinar. A substantial part of the pulvinar also expresses visual topography, reflecting visual maps in occipital cortex. There are just two well-ordered visual maps in the pulvinar, that both receive projections from area V1, and several other occipital areas; the resulting duplication of cortical topography means that each visual map also acts as a separate connection domain. In summary, the model identifies four topographically ordered connection domains, and reconciles the coexistence of visual and cortical maps in two of them. The replication principle operates at and below the level of domain structure. It is argued that cortico-pulvinar circuitry replicates the pattern of cortical circuitry but not its function, playing a more regulatory role instead. Thalamic neurons differ from cortical neurons in their inherent rhythmicity, and the pattern of cortico-thalamic connections must govern the formation of specific resonant circuits. The broad implication is that the pulvinar acts to coordinate cortical information processing by facilitating and sustaining the formation of synchronized trans-areal assemblies; a more pointed suggestion is that, owing to the considerable blurring of cortical topography in the pulvinar, rival cortical assemblies may be in competition to recruit thalamic elements in order to outlast each other in activity.  相似文献   

9.
We describe methods of localizing functional regions of the mesial wall, based on 47 patients studied intraoperatively or following chronic implantation of subdural electrodes. Somatosensory evoked potentials were recorded to stimulation of posterior tibial, dorsal pudendal, median, and trigeminal nerves. Bipolar cortical stimulation was performed, and in 4 cases movement-related potentials were recorded.The cingulate and marginal sulci formed the inferior and posterior borders of the sensorimotor areas and the supplementary motor area (SMA). The foot sensory area occupied the posterior paracentral lobule, while the genitalia were represented anterior to the foot sensory area, near the cingulate sulcus. The foot motor area was anterior and superior to the sensory areas, but there was overlap in these representations. There was a rough somatotopic organization within the SMA, with the face represented anterior to the hand. However, there was little evidence of the “pre-SMA” region described in monkeys. Complex movements involving more than one extremity were elicited by stimulation of much of the SMA. The region comprising the supplementary sensory area was not clearly identified, but may involve much of the precuneus. Movement-related potentials did not provide additional localizing information, although in some recordings readiness potentials were recorded from the SMA that appeared to be locally generated.  相似文献   

10.
It is without a doubt that humans are first and foremost visual beings. Even though the other sensory modalities provide us with valuable information, it is vision that generally offers the most reliable and detailed information concerning our immediate surroundings. It is therefore not surprising that nearly a third of the human brain processes, in one way or another, visual information. But what happens when the visual information no longer reaches these brain regions responsible for processing it? Indeed numerous medical conditions such as congenital glaucoma, retinis pigmentosa and retinal detachment, to name a few, can disrupt the visual system and lead to blindness. So, do the brain areas responsible for processing visual stimuli simply shut down and become non-functional? Do they become dead weight and simply stop contributing to cognitive and sensory processes? Current data suggests that this is not the case. Quite the contrary, it would seem that congenitally blind individuals benefit from the recruitment of these areas by other sensory modalities to carry out non-visual tasks. In fact, our laboratory has been studying blindness and its consequences on both the brain and behaviour for many years now. We have shown that blind individuals demonstrate exceptional hearing abilities. This finding holds true for stimuli originating from both near and far space. It also holds true, under certain circumstances, for those who lost their sight later in life, beyond a period generally believed to limit the brain changes following the loss of sight. In the case of the early blind, we have shown their ability to localize sounds is strongly correlated with activity in the occipital cortex (the location of the visual processing), demonstrating that these areas are functionally engaged by the task. Therefore it would seem that the plastic nature of the human brain allows them to make new use of the cerebral areas normally dedicated to visual processing.  相似文献   

11.
The primary sensory cortices are characterized by a topographical mapping of basic sensory features which is considered to deteriorate in higher-order areas in favor of complex sensory features. Recently, however, retinotopic maps were also discovered in the higher-order visual, parietal and prefrontal cortices. The discovery of these maps enabled the distinction between visual regions, clarified their function and hierarchical processing. Could such extension of topographical mapping to high-order processing regions apply to the auditory modality as well? This question has been studied previously in animal models but only sporadically in humans, whose anatomical and functional organization may differ from that of animals (e.g. unique verbal functions and Heschl''s gyrus curvature). Here we applied fMRI spectral analysis to investigate the cochleotopic organization of the human cerebral cortex. We found multiple mirror-symmetric novel cochleotopic maps covering most of the core and high-order human auditory cortex, including regions considered non-cochleotopic, stretching all the way to the superior temporal sulcus. These maps suggest that topographical mapping persists well beyond the auditory core and belt, and that the mirror-symmetry of topographical preferences may be a fundamental principle across sensory modalities.  相似文献   

12.
It has been empirically established that the cerebral cortical areas defined by Brodmann one hundred years ago solely on the basis of cellular organization are closely correlated to their function, such as sensation, association, and motion. Cytoarchitectonically distinct cortical areas have different densities and types of neurons. Thus, signaling patterns may also vary among cytoarchitectonically unique cortical areas. To examine how neuronal signaling patterns are related to innate cortical functions, we detected intrinsic features of cortical firing by devising a metric that efficiently isolates non-Poisson irregular characteristics, independent of spike rate fluctuations that are caused extrinsically by ever-changing behavioral conditions. Using the new metric, we analyzed spike trains from over 1,000 neurons in 15 cortical areas sampled by eight independent neurophysiological laboratories. Analysis of firing-pattern dissimilarities across cortical areas revealed a gradient of firing regularity that corresponded closely to the functional category of the cortical area; neuronal spiking patterns are regular in motor areas, random in the visual areas, and bursty in the prefrontal area. Thus, signaling patterns may play an important role in function-specific cerebral cortical computation.  相似文献   

13.
Small areas of somatosensory, visual and cingulate cortex were microdissected and assayed for their monoamine content by high-performance liquid chromatography with electrochemical detection. No differences were found between the right and the left hemisphere for any area nor for any of the monoamines. The values averaged from left and right hemispheres for the sensory areas were significantly different from the cingulate in the content of norepinephrine, 4-hydroxy-3-methoxyphenylglycol, dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, 5-hydroxyl-tryptophan, serotonin and 5-hydroxyindole-3-acetic acid. The two sensory cortices differed in their levels of norepinephrine, dopamine, 3–4-dihydroxyphenylacetic acid and homovanillic acid. In the latter comparison, the measured amounts were higher in somatosensory than in visual cortex. This biochemical heterogeneity in monoamine distribution may reflect specific innervation patterns for these compounds in these discrete cortical areas and allows differences in content to be related to functional specialization of the cerebral cortex.  相似文献   

14.
Comments on the eyes of tardigrades   总被引:1,自引:0,他引:1  
A survey is given on the scarce information on the visual organs (eyes or ocelli) of Tardigrada. Many Eutardigrada and some Arthrotardigrada, namely the Echiniscidae, possess inverse pigment-cup ocelli, which are located in the outer lobe of the brain, and probably are of cerebral origin. Occurrence of such organs in tardigrades, suggested as being eyeless, has never been checked. Depending on the species, response to light (photokinesis) is negative, positive or indifferent, and may change during the ontogeny. The tardigrade eyes of the two eutardigrades examined up to now comprise a single pigment cup cell, one or two microvillous (rhabdomeric) sensory cells and ciliary sensory cell(s). In the eyes of the eutardigrade Milnesium tardigradum the cilia are differentiated in an outer branching segment and an inner (dendritic) segment. Because of the scarcity of information on the tardigrade eyes, their homology with the visual organs of other bilaterians is currently difficult to establish and further comparative studies are needed. Thus, the significance of these eyes for the evolution of arthropod visual systems is unclear yet.  相似文献   

15.
Representation of the visual field was investigated in the feline posterior suprasylvian area (PSA) using electrophysiological mapping techniques. The PSA is one of the extrastriatal visual structures of the cerebral cortex. The PSA retinotopic organization pattern was also studied. Neuronal receptive fields (RF) were mainly located in the upper contralateral quadrant and just a small number in the lower contralateral quadrant of the visual field. Approximately 10% of RF were located in the upper ipsilateral quadrant. The central area of the visual field extending in a radius of 20–30° from the area centralis was mainly represented in the upper section of the PSA (areas 21a and 21b). The RP of neurons located more peripherally to the area centralis are found in the lower portion of the PSA (areas 20a and 20b); these occupy a correspondingly greater area. Experimental finding did not confirm any substantial differences in the retinotopic organization of areas 21a, 21b, 20a, and 20b comprising the PSA. Data obtained would tend to indicate that the PSA consists of two areas, 21a and 21b, which do not appear to be subdivided, with more densely distributed visual neurons in the former than in the latter.Institute of Experimental Biology of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 290–296, May–June, 1991.  相似文献   

16.
Neural systems are necessarily the adaptive products of natural selection, but a neural system, dedicated to any particular function in a complex brain, may be composed of components that covary with functionally unrelated systems, owing to constraints beyond immediate functional requirements. Some studies support a modular or mosaic organization of the brain, whereas others emphasize coordination and covariation. To contrast these views, we have analysed the retina, striate cortex (V1) and extrastriate cortex (V2, V3, MT, etc.) in 30 mammals, examining the area of the neocortex and individual neocortical areas and the relative numbers of rods and cones. Controlling for brain size and species relatedness, the sizes of visual cortical areas (striate, extrastriate) within the brains of nocturnal and diurnal mammals are not statistically different from one another. The relative sizes of all cortical areas, visual, somatosensory and auditory, are best predicted by the total size of the neocortex. In the sensory periphery, the retina is clearly specialized for niche. New data on rod and cone numbers in various New World primates confirm that rod and cone complements of the retina vary substantially between nocturnal and diurnal species. Although peripheral specializations or receptor surfaces may be highly susceptible to niche-specific selection pressures, the areal divisions of the cerebral cortex are considerably more conservative.  相似文献   

17.
In the central nervous system of the terrestrial snail Helix, the gene HCS2, which encodes several neuropeptides of the CNP (command neuron peptide) family, is mostly expressed in cells related to withdrawal behavior. In the present work, we demonstrate that a small percentage (0.1%) of the sensory cells, located in the sensory pad and in the surrounding epithelial region ("collar") of the anterior and posterior tentacles, is immunoreactive to antisera raised against the neuropeptides CNP2 and CNP4, encoded by the HCS2 gene. No CNP-like-immunoreactive neurons have been detected among the tentacular ganglionic interneurons. The CNP-like-immunoreactive fiber bundles enter the cerebral ganglia within the nerves of the tentacles (tentacular nerve and medial lip nerve) and innervate the metacerebral lobe, viz., the integrative brain region well-known as the target area for many cerebral ganglia nerves. The procerebral lobe, which is involved in the processing of olfactory information, is not CNP-immunoreactive. Our data suggest that the sensory cells, which contain the CNP neuropeptides, belong to a class of sensory neurons with a specific function, presumably involved in the withdrawal behavior of the snail.  相似文献   

18.
In patients with lesions in the right hemisphere, frequently involving the posterior parietal regions, left-sided somatosensory (and visual and motor) deficits not only reflect a disorder of primary sensory processes, but also have a higher-order component related to a defective spatial representation of the body. This additional factor, related to right brain damage, is clinically relevant: contralesional hemianaesthesia (and hemianopia and hemiplegia) is more frequent in right brain-damaged patients than in patients with damage to the left side of the brain. Three main lines of investigation suggest the existence of this higher-order pathological factor. (i) Right brain-damaged patients with left hemineglect may show physiological evidence of preserved processing of somatosensory stimuli, of which they are not aware. Similar results have been obtained in the visual domain. (ii) Direction-specific vestibular, visual optokinetic and somatosensory or proprioceptive stimulations may displace spatial frames of reference in right brain-damaged patients with left hemineglect, reducing or increasing the extent of the patients'' ipsilesional rightward directional error, and bring about similar directional effects in normal subjects. These stimulations, which may improve or worsen a number of manifestations of the neglect syndrome (such as extrapersonal and personal hemineglect), have similar effects on the severity of left somatosensory deficits (defective detection of tactile stimuli, position sense disorders). However, visuospatial hemineglect and the somatosensory deficits improved by these stimulations are independent, albeit related, disorders. (iii) The severity of left somatosensory deficits is affected by the spatial position of body segments, with reference to the midsagittal plane of the trunk. A general implication of these observations is that spatial (non-somatotopic) levels of representation contribute to corporeal awareness. The neural basis of these spatial frames includes the posterior parietal and the premotor frontal regions. These spatial representations could provide perceptual-premotor interfaces for the organization of movements (e.g. pointing, locomotion) directed towards targets in personal and extrapersonal space. In line with this view, there is evidence that the sensory stimulations that modulate left somatosensory deficits affect left motor disorders in a similar, direction-specific, fashion.  相似文献   

19.
Substantial evidence has highlighted the significant role of associative brain areas, such as the posterior parietal cortex (PPC) in transforming multimodal sensory information into motor plans. However, little is known about how different sensory information, which can have different delays or be absent, combines to produce a motor plan, such as executing a reaching movement. To address these issues, we constructed four biologically plausible network architectures to simulate PPC: 1) feedforward from sensory input to the PPC to a motor output area, 2) feedforward with the addition of an efference copy from the motor area, 3) feedforward with the addition of lateral or recurrent connectivity across PPC neurons, and 4) feedforward plus efference copy, and lateral connections. Using an evolutionary strategy, the connectivity of these network architectures was evolved to execute visually guided movements, where the target stimulus provided visual input for the entirety of each trial. The models were then tested on a memory guided motor task, where the visual target disappeared after a short duration. Sensory input to the neural networks had sensory delays consistent with results from monkey studies. We found that lateral connections within the PPC resulted in smoother movements and were necessary for accurate movements in the absence of visual input. The addition of lateral connections resulted in velocity profiles consistent with those observed in human and non-human primate visually guided studies of reaching, and allowed for smooth, rapid, and accurate movements under all conditions. In contrast, Feedforward or Feedback architectures were insufficient to overcome these challenges. Our results suggest that intrinsic lateral connections are critical for executing accurate, smooth motor plans.  相似文献   

20.
Opheliid nuchal organs are composed of ciliated cells, retractor muscles, and sensory cells. The perikarya of sensory cells are located in the posterior portion of the brain, and their distal processes extend along the body wall, as the nuchal nerve, and terminate just anterior to the ciliated region. The nuchal nerve of the juvenile is composed of 30–35 dendrites; the adult nuchal nerve has 35–40 dendrites. The ends of the sensory dendrites form sensory bulbs which are clustered around the olfactory chamber, and each bulb bears a modified cilium. Sensory cilia lose their axonemes and extend as microvillous-like structures into the olfactory chamber. Supportive cells delineate approximately the posterior and dorsal portions of the chamber with sensory bulbs forming the remaining ventral and anterior portions. On the lateral aspect of the chamber, cuticular matrix extends into it, and in this area supportive cells bear microvilli which extend into the matrix. The adult nuchal organ is larger than that of the juvenile, and the sensory portion of the olfactory chamber wall is expanded. Expansion of the sensory area is apparently the result of size increase in sensory bulbs and by intrusion of supportive cells between sensory bulbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号