首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cellular chaperone networks prevent potentially toxic protein aggregation and ensure proteome integrity. Here, we used Escherichia coli as a model to understand the organization of these networks, focusing on the cooperation of the DnaK system with the upstream chaperone Trigger factor (TF) and the downstream GroEL. Quantitative proteomics revealed that DnaK interacts with at least ~700 mostly cytosolic proteins, including ~180 relatively aggregation-prone proteins that utilize DnaK extensively during and after initial folding. Upon deletion of TF, DnaK interacts increasingly with ribosomal and other small, basic proteins, while its association with large multidomain proteins is reduced. DnaK also functions prominently in stabilizing proteins for subsequent folding by GroEL. These proteins accumulate on DnaK upon GroEL depletion and are then degraded, thus defining DnaK as a central organizer of the chaperone network. Combined loss of DnaK and TF causes proteostasis collapse with disruption of GroEL function, defective ribosomal biogenesis, and extensive aggregation of large proteins.  相似文献   

3.
Early region 3 genes of human adenoviruses contribute to the virus life cycle by altering the trafficking of cellular proteins involved in adaptive immunity and inflammatory responses. The ability of early region 3 genes to target specific molecules suggests that they could be used to curtail pathological processes associated with these molecules and treat human disease. However, this approach requires genetic dissection of the multiple functions attributed to early region 3 genes. The purpose of this study was to determine the role of targeting on the ability of the early region 3-encoded protein RIDalpha to downregulate the EGF receptor. A fusion protein between the RIDalpha cytoplasmic tail and glutathione S-transferase was used to isolate clathrin-associated adaptor 1 and adaptor 2 protein complexes from mammalian cells. Deletion and site-directed mutagenesis studies showed that residues 71-AYLRH of RIDalpha are necessary for in vitro binding to both adaptor complexes and that Tyr72 has an important role in these interactions. In addition, RIDalpha containing a Y72A point mutation accumulates in the trans-Golgi network and fails to downregulate the EGF receptor when it is introduced into mammalian cells as a transgene. Altogether, our data suggest a model where RIDalpha is trafficked directly from the trans-Golgi network to an endosomal compartment, where it intercepts EGF receptors undergoing constitutive recycling to the plasma membrane and redirects them to lysosomes.  相似文献   

4.
5.
In the DnaK (Hsp70) molecular chaperone system of Escherichia coli, the substrate polypeptide is fed into the chaperone cycle by association with the fast-binding, ATP-liganded form of the DnaK. The substrate binding properties of DnaK are controlled by its two cochaperones DnaJ (Hsp40) and GrpE. DnaJ stimulates the hydrolysis of DnaK-bound ATP, and GrpE accelerates ADP/ATP exchange. DnaJ has been described as targeting the substrate to DnaK, a concept that has remained rather obscure. Based on binding experiments with peptides and polypeptides we propose here a novel mechanism for the targeting action of DnaJ: ATP.DnaK and DnaJ with its substrate-binding domain bind to different segments of one and the same polypeptide chain forming (ATP.DnaK)m.substrate.DnaJn complexes; in these ternary complexes efficient cis-interaction of the J-domain of DnaJ with DnaK is favored by their propinquity and triggers the hydrolysis of DnaK-bound ATP, converting DnaK to its ADP-liganded high affinity state and thus locking it onto the substrate polypeptide.  相似文献   

6.
Activation of extracellular-regulated kinases 1/2 (ERK) is involved in lipopolysaccharide (LPS)-induced cellular responses such as the increased production of proinflammatory cytokines. However, mitogen-activated protein kinases (MAPKs) such as p38 are also activated by LPS and have been postulated to be important in the control of these end points. Therefore, establishing the relative contribution of MAPKs in each cell type is important, as is elucidating the molecular mechanisms by which these MAPKs are activated in LPS-induced signaling cascades. We demonstrated in DC2.4 dendritic cells that ERK regulates tyrosine phosphorylation of phosphatidyl-inositol-3-kinase (PI3-K) and the production of TNF-alpha. We also demonstrated that Raf1 is phosphorylated and involved in the production of TNF-alpha and tyrosine phosphorylation of PI3-K via ERK. Raf1 also regulates the activation of NF-kappaB. We propose that Raf1 plays a pivotal role in LPS-induced activation of the dendritic cells.  相似文献   

7.
Congenital heart disease (CHD) is a worldwide health problem, particularly in young populations. In spite of the advancement and progress in medical research and technology, the underlying causative factors and mechanisms of CHD still remain unclear. Bone morphogenetic protein receptor IA (ALK3) mediates the development of ventricular septal defect (VSD). We have recently found that paired box gene 8 (Pax8) may be the downstream molecule of ALK3. Paired box gene 8 plays an essential role in VSD, and apoptosis and proliferation imbalance leads to septal dysplasia. Recent studies have also disclosed that cellular senescence also participates in embryonic development. Whether programmed senescence exists in cardiac organogenesis has not ever been reported. We hypothesized that together with various biological processes, such as apoptosis, enhanced cellular senescence may occur actively in the development of Pax8 null mice murine hearts. In H9C2 myogenic cells, Pax8 overexpression can rescue caspase‐dependent apoptosis induced by ALK3 silencing. Senescent cells and senescence‐associated mediators in Pax8 knockout hearts increased compared with the wild‐type ones in an age‐dependent manner. These results suggest that Pax8 maybe the downstream molecule of ALK3, it mediates the murine heart development perhaps via cellular senescence, which may serve as a mechanism that compensates for the cell loss via apoptosis in heart development.  相似文献   

8.
The twin-arginine translocation (Tat) system is a bacterial protein targeting pathway. Tat-targeted proteins display signal peptides containing a distinctive SRRxFLK ‘twin-arginine’ motif. The Escherichia coli trimethylamine N-oxide reductase (TorA) bears a bifunctional Tat signal peptide, which directs protein export and serves as a binding site for the TorD biosynthetic chaperone. Here, the physical interaction between TorD and the TorA signal peptide was investigated. A single substitution within the TorA signal peptide (L31Q) was sufficient to impair TorD binding. Screening of a random torD mutant library identified a variant TorD protein (Q7L) that displayed increased binding affinity for the TorA signal peptide.

Structured summary

MINT-6796225, MINT-6796279, MINT-6796298, MINT-6796315, MINT-6796332, MINT-6796350, MINT-6796371, MINT-6796391, MINT-6796410, MINT-6796429, MINT-6796446, MINT-6796460:
TorD (uniprotkb:P36662) physically interacts (MI:0218) with TorA (uniprotkb:P33225) by two-hybrid (MI:0018)
MINT-6796515, MINT-6796563, MINT-6796589, MINT-6796624, MINT-6796648, MINT-6796666, MINT-6796770, MINT-6796750:
TorA (uniprotkb:P33225) binds (MI:0407) to TorD (uniprotkb:P36662) by isothermal titration calorimetry (MI:0065)
  相似文献   

9.
Development of strategies to prevent herpes simplex virus (HSV) infection requires knowledge of cellular pathways harnessed by the virus for invasion. This study demonstrates that HSV induces rapid phosphorylation of focal adhesion kinase (FAK) in several human target cells and that phosphorylation is important for entry post-binding. Nuclear transport of the viral tegument protein VP16, transport of viral capsids to the nuclear pore, and downstream events (including expression of immediate-early genes and viral plaque formation) were substantially reduced in cells transfected with dominant-negative mutants of FAK or small interfering RNA designed to inhibit FAK expression. These observations were substantiated using mouse embryonic fibroblast cells derived from embryonic FAK-deficient mice. Infection was reduced by >90% in knockout cells relative to control cells and was further reduced if the knockout cells were transfected with small interfering RNA targeting proline-rich tyrosine kinase-2, which was also phosphorylated in response to HSV. The knockout cells were permissive for viral binding, and virus triggered an intracellular calcium response, but nuclear transport was inhibited. Together, these results support a novel model for invasion that implicates FAK phosphorylation as important for delivery of viral capsids to the nuclear pore.  相似文献   

10.
Acute lung injury (ALI) is a severe illness with excess mortality and no specific therapy. In its early exudative phase, neutrophil activation and accumulation in the lung lead to hypoxemia, widespread tissue damage, and respiratory failure. In clinical trials, inhibition of proinflammatory mediators has not proven effective. In this study, we pursued a new investigative strategy that emphasizes mediators promoting resolution from lung injury. A new spontaneously resolving experimental murine model of ALI from acid aspiration was developed to identify endogenous proresolving mechanisms. ALI increased cyclooxygenase 2 (COX-2) expression in murine lung. Selective pharmacologic inhibition or gene disruption of COX-2 blocked resolution of ALI. COX-2-derived products increased levels of the proresolving lipid mediators lipoxin A4 (LXA4) and, in the presence of aspirin, 15-epi-LXA4. Both LXA4 and 15-epi-LXA4 interact with the LXA4 receptor (ALX) to mediate anti-inflammatory actions. ALX expression was markedly induced by acid injury and transgenic mice with increased ALX expression displayed dramatic protection from ALI. Together, these findings indicate a protective role in ALI for COX-2-derived mediators, in part via enhanced lipoxin signaling, and carry potential therapeutic implications for this devastating clinical disorder.  相似文献   

11.
环氧合酶在神经变性疾病神经元进行性损伤中起重要作用   总被引:1,自引:0,他引:1  
Gao JP  Sun S  Li WW  Zhao H  Cai DF 《生理科学进展》2008,39(3):214-220
环氧合酶(COX)是非甾体抗炎药的主要作用靶点.自从上世纪90年代初被发现至今,COX已被证实广泛参与炎性反应过程.小胶质细胞是介导"神经炎性反应"的主要细胞类型,过去十年中,COX通路参与小胶质细胞激活及神经变性过程的机制取得了很大进展.本文对该领域的新近研究成果予以论述,并以三大神经变性疾病,即阿尔采末病(AD)、帕金森病(PD)和肌萎缩侧索硬化症(ALS)为例,对COX在其发病中的作用加以阐释,突出该领域的研究热点,为神经变性疾病发病机制及药物治疗研究提供新的思路.  相似文献   

12.
Glutamate transporters from the central nervous system play a crucial role in the clearance of the transmitter from the synaptic cleft. Glutamate is cotransported with sodium ions, and the electrogenic translocation cycle is completed by countertransport of potassium. Mutants that cannot interact with potassium are only capable of catalyzing electroneutral exchange. Here we identify a residue involved in controlling substrate recognition in the neuronal transporter EAAC-1 that transports acidic amino acids as well as cysteine. When arginine 447, a residue conserved in all glutamate transporters, is replaced by cysteine, transport of glutamate or aspartate is abolished, but sodium-dependent cysteine transport is left intact. Analysis of other substitution mutants shows that the replacement of arginine rather than the introduced cysteine is responsible for the observed phenotype. In further contrast to wild type, acidic amino acids are unable to inhibit cysteine transport in R447C-EAAC-1, indicating that the selectivity change is manifested at the binding step. Electrophysiological analysis shows that in the mutant cysteine, transport has become electroneutral, and its interaction with the countertransported potassium is impaired. Thus arginine 447 plays a pivotal role in the sequential interaction of acidic amino acids and potassium with the transporter and, thereby, constitutes one of the molecular determinants of coupling their fluxes.  相似文献   

13.
Nuclear localization signal of ING4 plays a key role in its binding to p53   总被引:10,自引:0,他引:10  
ING4, a novel member of ING family, is recently reported to interact with tumor suppressor p53 and negatively regulate the cell growth with significant G2/M arrest of cell cycle in HepG2 cells through upregulation of p53-inducible gene p21. However, which region of ING4 could have contributed to the binding to p53 remains largely unclear. Herein, the GST-pulldown experiments revealed that the middle region of ING4, a potential bipartite nuclear localization signal (NLS), could be involved in the binding to p53. Furthermore, the interaction of ING4 to p53 was abrogated in vitro and in vivo when certain mutations or the entire deletion of the NLS domain occurred. More interestingly, the mutations of the NLS domain could alter the ING4 nuclear localization, disrupt the interaction of ING4 with p53, and even, deregulate the p53-inducible gene p21 in MCF-7 cells. All data indicated that the NLS domain of ING4 is essential for the binding of ING4 to p53 and the function of ING4 associated with p53.  相似文献   

14.
Luo H  Ye F  Chen K  Shen X  Jiang H 《Biochemistry》2005,44(46):15351-15358
The nucleocapsid (N) protein of SARS coronavirus (SARS-CoV) is reported to function in encapsidating the viral genomic RNA into helical nucleocapsid, and its self-association is believed to be vital in coating the viral genomic RNA. Characterization of SARS-CoV N multimerization may thereby help us better understand the coronavirus assembly. In the current work, using the yeast two-hybrid technique, an unexpected interaction between residues 1-210 and 211-290 (central region) of the SARS-CoV N protein was detected, and SPR results further revealed that the SR-rich motif (amino acids 183-197) of SARS-CoV N protein is responsible for such an interaction. Chemical cross-linking and gel-filtration analyses indicated that the residues 283-422 of the SARS-CoV N protein have multimeric ability, although the full-length N protein is prone to exist predominantly as dimers. In addition, the multimeric ability of the C-terminal domain of SARS-CoV N protein could be weakened by the SR-rich motif interaction with the central region (amino acids 211-290). All of these data suggested that the SR-rich motif of the SARS-CoV N protein might play an import role in the transformation of the SARS-CoV N protein between the dimer and multimer during its binding to its central region for self-association or dissociation. This current paper will hopefully provide some new ideas in studying SARS-CoV N multimerization.  相似文献   

15.
Reductions in red blood cell membrane deformability (RBC(D)) may perturb microcirculatory blood flow and impair tissue O(2)-availability. We investigated the effect of assay temperature on the distribution of RBC(D) in endotoxin (LPS) incubated and control RBCs. Fresh blood from healthy rats was incubated with and without the presence of LPS for 6 hrs. An index of red blood cell membrane deformability, delta, was measured via the micropipette aspiration technique at 25 degrees C and 37 degrees C at 0, 2 and 6 hrs of incubation. The ATP content of RBC was measured by the luciferin-luciferase technique. At 25 degrees C, LPS caused a significant decrease in mean delta after 2 and 6 hours incubation compared to controls (-10.0%, p=0.03 and -24.0%, p=0.03, respectively) characterized by a left shift in the distribution (skewness: -1.4). However, at 37 degrees C a significant decrease in delta was only detected after 6 hrs of LPS incubation (-13.8%, p=0.01, compared to -5.1%, p=0.7 at 2 hours) and lacked the left shifted distribution (skewness: 0.2). No significant difference in ATP content of RBCs was observed between groups. We have shown that LPS incubation results in a significant decrease in RBC(D) and that room temperature measurement of physical membrane properties may exaggerate the differences between normal and perturbed RBCs.  相似文献   

16.
17.
The Nef protein of primate lentiviruses downregulates the cell surface expression of CD4 through a two-step process. First, Nef connects the cytoplasmic tail of CD4 with adaptor protein complexes (AP), thereby inducing the formation of CD4-specific clathrin-coated pits that rapidly endocytose the viral receptor. Second, Nef targets internalized CD4 molecules for degradation. Here we show that Nef accomplishes this second task by acting as a connector between CD4 and the beta subunit of COPI coatomers in endosomes. A sequence encompassing a critical acidic dipeptide, located nearby but distinct from the AP-binding determinant of HIV-1 Nef, is responsible for beta-COP recruitment and for routing to lysosomes. A novel class of endosomal sorting motif, based on acidic residues, is thus revealed, and beta-COP is identified as its downstream partner.  相似文献   

18.
Intracellular polyamine synthesis is regulated by the enzyme ornithine decarboxylase (ODC), and its inhibition by -difluromethylornithine (DFMO), confers resistance to apoptosis. We have previously shown that DFMO leads to the inhibition of de novo polyamine synthesis, which in turn rapidly activates Src, STAT3 and NF-κB via integrin β3 in intestinal epithelial cells. One mechanism to explain these effects involves the activation of upstream growth factor receptors, such as the epidermal growth factor receptor (EGFR). We therefore hypothesized that EGFR phosphorylation regulates the early response to polyamine depletion. DFMO increased EGFR phosphorylation on tyrosine residues 1173 (pY1173) and 845 (pY845) within 5 min. Phosphorylation declined after 10 min and was prevented by the addition of exogenous putrescine to DFMO containing medium. Phosphorylation of EGFR was concomitant with the activation of ERK1/2. Pretreatment with either DFMO or EGF for 1 h protected cells from TNF-/CHX-induced apoptosis. Exogenous addition of polyamines prevented the protective effect of DFMO. In addition, inhibition of integrin β3 activity (with RGDS), Src activity (with PP2), or EGFR kinase activity (with AG1478), increased basal apoptosis and prevented protection conferred by either DFMO or EGF. Polyamine depletion failed to protect B82L fibroblasts lacking the EGFR (PRN) and PRN cells expressing either a kinase dead EGFR (K721A) or an EGFR (Y845F) mutant lacking the Src phosphorylation site. Conversely, expression of WT-EGFR (WT) restored the protective effect of polyamine depletion. Fibronectin activated the EGFR, Src, ERKs and protected cells from apoptosis. Taken together, our data indicate an essential role of EGFR kinase activity in MEK/ERK-mediated protection, which synergizes with integrin β3 leading to Src-mediated protective responses in polyamine depleted cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号