首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stortz CA 《Carbohydrate research》2006,341(15):2531-2542
The adiabatic potential energy surfaces (PES) of six trisaccharides, sulfated derivatives of alpha-D-Gal p-(1-->3)-beta-D-Gal p-(1-->4)-alpha-D-Gal p and beta-D-Gal p-(1-->4)-alpha-D-Gal p-(1-->3)-beta-D-Gal p representing models of lambda-, mu-, and nu-carrageenans were obtained using the MM3 force-field at epsilon = 3. Each PES was described by a single contour map for which the energy is plotted against the two psi glycosidic angles, given the small variations of the phi glycosidic torsional angle in the low-energy regions of disaccharide maps. Most surfaces appear as expected from the maps of the disaccharidic repeating units of carrageenans, with less important factors altering the additive effect of both linkages. Only small interactions between the first and third monosaccharidic moieties of the trisaccharides are observed. The flexibility of the alpha-linkages appears nearly identical to that in their disaccharide counterparts, with only one exception, where it appears reduced by the presence of the third monosaccharide. On the other hand, the flexibility of the beta-linkage appears to be equal or sometimes even higher than that observed for the corresponding disaccharide.  相似文献   

2.
The O-specific polysaccharide of Shigella dysenteriae type 1, which has the repeating tetrasaccharide unit -->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-D-Galp-(1-->3)-alpha-D-GlcNAcp-(1--> (A-B-C-D), is a major virulence factor, and it is believed that antibodies against this polysaccharide confer protection to the host. The conformational properties of fragments of this O-antigen were explored using systematic search with a modified HSEA method (GLYCAN) and with molecular mechanics MM3(96). The results show that the alpha-D-Gal-(1-->3)-alpha-D-GlcNAc linkage adopts two favored conformations, phi/psi approximately equal to -40 degrees /-30 degrees (I) and approximately 15 degrees /30 degrees (II), whereas the other glycosidic linkages only have a single favored phi/psi conformational range. MM3 indicates that the trisaccharide B-C-D and tetrasaccharides containing the B-C-D moiety exist as two different conformers, distinguished by the conformations I and II of the C-D linkage. For the pentasaccharide A-B-C-D-A' and longer fragments, the calculations show preference for the C-D conformation II. These results can explain previously reported nuclear magnetic resonance data. The pentasaccharide in its favored conformation II is sharply bent, with the galactose residue exposed at the vertex. This hairpin conformation of the pentasaccharide was successfully docked with the binding site of a monoclonal IgM antibody (E3707 E9) that had been homology modeled from known crystal structures. For fragments made of repetitive tetrasaccharide units, the hairpin conformation leads to a left-handed helical structure with the galactose residues protruding radially at the helix surface. This arrangement results in a pronounced exposure of the galactose and also the adjacent rhamnose in each repeating unit, which is consistent with the known role of the as alpha-L-Rhap-(1-->2)-alpha-D-Galp moiety as a major antigenic epitope of this O-specific polysaccharide.  相似文献   

3.
The alkali extractable and water-soluble cell wall polysaccharides F1SS from Aspergillus wentii and Chaetosartorya chrysella have been studied by methylation analysis, 1D- and 2D-NMR, and MALDI-TOF analysis. Their structures are almost identical, corresponding to the following repeating unit: [--> 3)-beta-D-Gal f -(1 --> 5)-beta-D-Gal f-(1 -->]n --> mannan core. The structure of this galactofuranose side chain differs from that found in the pathogenic fungus Aspergillus fumigatus, in other Aspergillii and members of Trichocomaceae: [--> 5)-beta-D-Gal f-(1 -->]n --> mannan core. The mannan cores have also been investigated, and are constituted by a (1 --> 6)-alpha-mannan backbone, substituted at positions 2 by chains from 1 to 7 residues of (1 --> 2) linked alpha-mannopyranoses.  相似文献   

4.
Li B  Wei XJ  Sun JL  Xu SY 《Carbohydrate research》2006,341(9):1135-1146
A fucoidan, obtained from the hot-water extract of the brown seaweed, Hizikia fusiforme, was separated into five fractions by DEAE Sepharose CL-6B and Sepharose CL-6B column chromatography. All five fractions contained predominantly fucose, mannose and galactose and also contained sulfate groups and uronic acid. The fucoidans had MWs from 25 to 950 kDa. The structure of fraction F32 was investigated by desulfation, carboxyl-group reduction, partial hydrolysis, methylation analysis and NMR spectroscopy. The results showed that the sugar composition of F32 was mainly fucose, galactose, mannose, xylose and glucuronic acid; sulfate was 21.8%, and the MW was 92.7 kDa. The core of F32 was mainly composed of alternating units of -->2)-alpha-D-Man(1--> and -->4)-beta-D-GlcA(1-->, with a minor portion of -->4)-beta-D-Gal(1--> units. The branch points were at C-3 of -->2)-Man-(1-->, C-2 of -->4)-Gal-(1--> and C-2 of -->6)-Gal-(1-->. About two-thirds of the fucose units were at the nonreducing ends, and the remainder were (1-->4)-, (1-->3)- and (1-->2)-linked. About two-thirds of xylose units were at the nonreducing ends, and the remainder were (1-->4)-linked. Most of the mannose units were (1-->2)-linked, and two-thirds of them had a branch at C-3. Galactose was mainly (1-->6)-linked. The absolute configurations of the sugar residues were alpha-D-Manp, alpha-L-Fucp, alpha-D-Xylp, beta-D-Galp and beta-D-GlcpA. Sulfate groups in F32 were at C-6 of -->2,3)-Man-(1-->, C-4 and C-6 of -->2)-Man-(1-->, C-3 of -->6)-Gal-(1-->, C-2, C-3 or C-4 of fucose, while some fucose had two sulfate groups. There were no sulfate groups in either the GlcA or xylose residues.  相似文献   

5.
The branched O-antigens of Escherichia coli O159 and Shigella dysenteriae type 4 are structurally related and are known to show cross-reactivity with antibodies. In the present study, conformational analyses were performed on these two O-antigens using molecular mechanics MM3(96) with filtered systematic search. The results show very strong steric restrictions for the trisaccharide at the branch point of the E. coli O159 antigen, especially for the β-d-GlcNAc-(1 → 3)-β-d-GlcNAc linkage of the main chain. For the type 4 O-antigen the calculations show essentially a single conformation with respect to the α-d-GlcNAc-(1 → 3)-α-d-GlcNAc linkage of the main chain and three different favoured conformations for the fucose branch. Consecutive repeating units of the S. dysenteriae type 4 and E. coli O159 O-antigens form linear extended chains with significant flexibility between the branches. Comparative calculations carried out with the SWEET server indicate that our method of filtered systematic search is a superior method in the case of branched, constrained oligosaccharides. Based on the results of the MM3 calculations, we propose that the common epitope explaining the cross-reactivity comprises the fucose branch, the downstream GlcNAc and part of the uronic acid.  相似文献   

6.
An N-acetyl-D-galactosamine-specific lectin has been isolated from the two seed forms of the hog peanut (Amphicarpaea bracteata) using an affinity support containing the synthetic type A blood group trisaccharide alpha-D-GalNAc-(1,3)-[alpha-L-Fuc-(1,2)]-beta-D-Gal (Synsorb A). The affinity-purified lectin appears to be identical in both seed types. Gel filtration on Sephadex G-200 gives a single symmetrical peak corresponding to Mr 135,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows four subunit forms, each of which contains carbohydrate. Limited amino terminal sequencing indicates heterogeneity in two of the first 10 residues. The lectin contains no cysteine. There are four equivalent, noninteracting GalNAc binding sites per 135,000-Da molecule, having an association constant for methyl N-acetyl-alpha-D-galactosaminide of 4.0 X 10(4) M-1. Precipitin and hapten inhibition studies show the lectin to be specific for terminal, nonreducing D-GalNAc units, with a preference for the alpha-anomer and enhanced specificity for the disaccharide, GalNAc alpha 1,3GalNAc. There is also a single adenine binding site per Mr 135,000 lectin molecule with an association constant of 1.3 X 10(6) M-1.  相似文献   

7.
A molecular modeling study has revealed that (1 --> 3)-beta-D-galactan can not only adopt a triple helical structure similar to that of the corresponding glucan but can also accommodate a highly flexible beta-D-Gal-(1 --> 6)-beta-D-Gal disaccharide moiety as a side group 6-linked to every galactosyl unit in the main chain. The resulting triple helix, applicable to Western larch arabinogalactan, can assume quite different morphologies since the side group has access to several allowed conformational states. Some of the preferred modes of association between these helices have been visualized using preliminary X-ray fiber diffraction data.  相似文献   

8.
We present a computational conformational analysis of the exopolysaccharide of Burkholderia cepacia, which is believed to play a role in colonization and persistence of B. cepacia in the lungs of cystic fibrosis patients. The repeating unit of the exopolysaccharide is a heptasaccharide with three branches, which cause significant steric restraints. Conformational searches using glygal, an in-house developed software using genetic algorithm search methods, were performed on fragments as well as on the complete repeating unit with wrap-over residues. The force field used for the calculations was MM3(96). The search showed four favored conformations for an isolated repeating unit. However, for a sequence of several repeating units, the calculations indicate a single, well-defined linear conformation.  相似文献   

9.
Two-dimensional nuclear Overhauser enhancement (2D NOESY) data are reported for the polypentapeptide of elastin, poly(VPGVG), and the cyclopentadecapeptide, cyclo(VPGVG)3. In both, the repeating type II Pro2-Gly3 beta-turn can be derived from the NOE data, providing confirmation of many previous studies. In addition, other through-space connectivities are detailed that also compare favorably with previously determined crystal and solution structures for cyclo(VPGVG)3. Also, near identical data for the cyclopentadecapeptide and the polypentapeptide demonstrate the cyclic conformation-linear (helical) conformational correlate relationship between the two molecules. The 2D NOESY experiment is seen to be an effective means of establishing the presence or absence of a conformational relationship between a cyclic repeating sequence and its higher molecular weight linear counterpart. This is an approach of substantial practical value when developing the conformation of sequential polypeptides and when attempting to identify the presence of the conformation of a repeating peptide sequence within a more complex primary structure. Having established the basic conformational relationship between a cyclic conformation and its linear helical counterpart, cross peaks present in the linear helical structure that are not present in the cyclic conformational correlate can provide information on the interactions between adjacent turns of the helix. In this connection, a Val gamma CH3 in equilibrium Pro beta CH2 interaction is reported that can be the basis for determining the number of pentamers per turn of helix once it is determined whether it is dominantly the Val1 or Val4 gamma CH3 that is interacting with the Pro2 beta CH2.  相似文献   

10.
A series of well-defined oligosaccharide fragments of the capsular polysaccharide of Streptococcus pneumoniae type 3 has been generated. Partial-acid hydrolysis of the capsular polysaccharide, followed by fractionation of the oligosaccharide mixture by Sepharose Q ion-exchange chromatography yielded fragments containing one to seven [-->3)-beta-D-GlcpA-(1-->4)-beta-D-Glcp-(1-->] repeating units. The isolated fragments were analysed for purity by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) using an IonPac AS11 column, and their structures were verified by 1H NMR spectroscopy and nano-electrospray mass spectrometry. The oligosaccharides can be used to produce neoglycoprotein vaccines with a defined carbohydrate part.  相似文献   

11.
A fucoidan fraction consisting of L-fucose, sulfate, and acetate in a molar proportion of 1:1.21:0.08 was isolated from the brown seaweed Fucus distichus collected from the Barents Sea. The 13C NMR spectrum of the fraction was typical of regular polysaccharides containing disaccharide repeating units. According to 1D and 2D 1H and 13C NMR spectra, the fucoidan molecules are built up of alternating 3-linked alpha-L-fucopyranose 2,4-disulfate and 4-linked alpha-L-fucopyranose 2-sulfate residues: -->3)-alpha-L-Fucp-(2,4-di-SO3-)-(1-->4)-alpha-L-Fucp-(2SO3-)-(1-->. The regular structure may be only slightly masked by random acetylation and undersulfation of several disaccharide repeating units.  相似文献   

12.
The structure of the O-antigen polysaccharide (PS) from the enteroaggregative Escherichia coli strain 180/C3 has been determined. Sugar and methylation analysis together with (1)H and (13)C NMR spectroscopy were the main methods used. The PS is composed of tetrasaccharide repeating units with the following structure: -->2)beta-D-Quip3NAc-(1-->3)beta-D-RIBf-(1-->4)beta-D-Galp-(1-->3)alpha-D-GalpNAc-(1-->. Analysis of NMR data indicates that the presented sequence of sugar residues also represents the biological repeating unit of the O-chain. The structure is closely related to that of O-antigen polysaccharide from E. coli O5 and partially to that of E. coli O65. The difference between the O-antigen from the 180/C3 strain and that of E. coli O5 is the linkage to the D-Quip3NAc residue, which in the latter strain is 4-O-substituted. The E. coli O65 O-antigen contains as part of its linear pentasaccharide repeating unit a similar structural element, namely -->4)-beta-d-GalpA-(1-->3)-alpha-D-GlcpNAc-(1-->2)-beta-D-Quip3NAc-(1-->, thereby indicating that a common epitope could be present for the two polysaccharides. Monospecific anti-E. coli O5 rabbit serum did not distinguish between the two positional isomeric structures neither in slide agglutination nor in an indirect enzyme immunoassay. The anti-O65 serum did react with both the 180/C3 and O5 LPS showing a partial cross-reactivity.  相似文献   

13.
The chemo-enzymatic synthesis is described of tetrasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (1) and octasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (2), representing one and two tetrasaccharide repeating units of Streptococcus pneumoniae serotype 14 capsular polysaccharide. In a chemical approach, the intermediate linear trisaccharide 3 and hexasaccharide 4 were synthesized. Galactose residues were beta-(1-->4)-connected to the internal N-acetyl-beta-D-glucosamine residues by using bovine milk beta-1,4-galactosyltransferase. Both title oligosaccharides will be conjugated to carrier proteins to be tested as potential vaccines in animal models.  相似文献   

14.
We have derived oligosaccharides from the capsular polysaccharide of type III group B Streptococcus by enzymatic hydrolysis of a specific backbone glycosidic bond utilizing an endo-beta-galactosidase from Flavobacterium keratolyticus. Enzymatic digestion of the polysaccharide produced oligosaccharide fragments of one or more pentasaccharide repeating units. On the basis of 13C NMR, 1H NMR, and methylation analyses, it was established that the smallest digestion fragment was alpha-D-NeupNAc-(2----3)-beta-D-Galp-(1----4)-[beta-D-Glcp-(1----6 )]- beta-D-GlcpNAc-(1----3)-beta-D-Gal. The isolation of this oligosaccharide is consistent with the susceptibility of the beta-D-Galp-(1----4)-beta-D-Glcp linkage in the backbone of the type III group B streptococcal polysaccharide and confirms that the polysaccharide is composed of a pentasaccharide repeating unit. High resolution 13C NMR spectroscopic studies indicated that, as in the case of the pentasaccharide, the terminal sialic acid residues of the type III group B streptococcal polysaccharide were linked to O-3 and not to O-6 of its branch beta-D-galactopyranosyl residues as had been previously reported (Jennings, H. J., Rosell, K.-G., and Kasper, D. L. (1980) Can. J. Chem. 58, 112-120). This linkage was confirmed in an independent methylation analysis of the type III group B streptococcal polysaccharide. Thin layer chromatogram binding assay and radioactive antigen binding assays with radiolabeled oligosaccharides demonstrated the single repeating unit pentasaccharide oligosaccharide to be poorly antigenic. Increasing oligosaccharide size to a decasaccharide consisting of two repeating units resulted in an 8-fold increase in antigen binding in the direct radioactive antigen binding assay. The results suggest that a region of the immunodeterminant site critical for antibody binding is located in the backbone of the polysaccharide and involves the beta-D-galactopyranose-(1----4) beta-D-glucopyranose bond.  相似文献   

15.
The molecular and crystal structure of curdlan triacetate, acetylated (1 → 3)β-D -glucan, was analyzed by means of an x-ray diffraction technique with the help of the linked-atom least-squares method. Unit cell dimensions are a = b = 11.00(1), c(fiber axis) = 22.91 (9) Å, and γ = 120°. The space group is P61. The unit cell contains six chemical repeating units related by 6/I-helical symmetry, which is essentially the same as the backbone conformation of one of the modifications (form I) of curdlan. During the refinement calculation, the terminal methyl in every acetyl moiety was elastically restrained to the trans conformation commonly observed in related oligosaccharide structures. The difference Fourier map, the observed and calculated densities, and the thermogravimetric measurement indicated one water molecule per glucose residue. The water oxygen is linked to two carbonyl oxygens in adjacent molecules by hydrogen bonds. The conformation of the primary acetyl moiety is a (skew, -gauche, trans). So far, no skew conformation was observed for the primary acetyl and hydroxyl moieties except in α, β-panose. In both cases, the unusual eclipsed orientation of the primary group is attributed to the hydrogen bond and this conformation is quite different from that of pachyman triacetate. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The structure of the O-antigenic part of the lipopolysaccharide (LPS) obtained from the verotoxin-producing Escherichia coli O171 has been determined. (1)H and (13)C NMR spectroscopy techniques in combination with component analysis were used to elucidate the O-antigen structure of O-deacylated LPS. Subsequent NMR analysis of the native LPS revealed acetylation at O-7/O-9 of the sialic acid residue. The sequence of sugars was determined by inter-residue correlations in (1)H,(1)H-NOESY and (1)H,(13)C-heteronuclear multiple-bond correlation spectra. The O-antigen is composed of pentasaccharide repeating units with one equivalent of O-acetyl groups distributed over two positions: -->4)-alpha-Neu5Ac7,9Ac-(2-->6)-beta-D-Galp-(1-->6)-beta-DGlcp-->(1-->3)-beta-D-Galp-(1-->3)-beta-D-GalpNAc-(1--> Based on biosynthetic considerations, this should also be the biological repeating unit.  相似文献   

17.
The structures of the carbohydrate O-specific side-chain moiety of the lipopolysaccharides (LPS) of Yokenella regensburgei, strains PCM 2476, 2477, 2478, and 2494, have been investigated by (1)H and (13)C NMR, fast atom bombardment tandem mass spectrometry (FAB-MSMS), matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, methylation analysis, partial acid hydrolysis, and immunological methods. It was concluded that the O-specific polysaccharides of strains 2476, 2477, 2478, and 2494 are composed of the same basic trisaccharide repeating unit having the structure -->3)-alpha-D-FucpNAc-(1-->2)-L-alpha-D-Hepp-(1-->3)-6-deoxy -alpha-L- Talp-(1-->, in which L-alpha-D-Hepp is L-glycero-alpha-D-manno-heptopyranose. The detailed analysis revealed, however, differences in O-acetylation patterns of the 6-deoxy-L-talose residue, with 2- and 4-O-acetyl disubstituted -->3)-6-deoxy-alpha-L-Talp-(1--> in strain PCM 2476 and a 2-O-acetylated residue in strains 2477, 2478, and 2494. These structures represent novel, trisaccharide repeating units of bacterial O-antigens that are characteristic and unique to the Y. regensburgeispecies. By use of the high-resolution magic-angle spinning (HR-MAS) technique, (1)H NMR spectra of the O-polysaccharides directly in isolated LPS were obtained. This allowed for almost full assignment and structural determination of the polysaccharide. By this technique the O-polysaccharide components were also observed in their original form directly on the surface of living bacterial cells.  相似文献   

18.
Starting from D-mannose, D-glucose and L-fucose, the pentasaccharide derivative methyl 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl-(1-->3)-2-O-acetyl-4,6-O-benzylidene-alpha-D-mannopyranosyl-(1-->3)-2-O-acetyl-6-O-benzyl-4-O-(2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl)-alpha-D-mannopyranosyl-(1-->4)-[2-(trimethylsilyl)ethyl 2,3-di-O-benzyl-beta-D-glucopyranosid]uronate was synthesized. This compound with two alpha-mannopyranosyl units was transformed, via Walden inversion and subsequent deprotection, into the alpha-D-glucosamine-type target compound, namely methyl alpha-L-fucopyranosyl-(1-->3)-2-acetamido-2-deoxy-alpha-D-glucopyranosyl-(1-->3)-2-acetamido-2-deoxy-4-O-(alpha-L-fucopyranosyl)-alpha-D-glucopyranosyl-(1-->4)-[2-(trimethylsilyl)ethyl beta-D-glucopyranosid]uronate which is related to the repeating unit of the O-antigen from Shigella dysenteriae type 4.  相似文献   

19.
Deprotection of the fully blocked disacharide allyl O-(2-amino-4,6-O-benzylidene-3-O-[(R)-1-carboxyethyl]-2-deoxy-beta-D-glucopyranosyl-1',2-lactam)-(1-->4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside by selective de-O-allylation and parallel removal of the benzylidene and O-benzyl groups is described. The resulting beta-muramyl lactam-(1-->4)-GlcNAc disaccharide is characterised as the per-O-acetylated derivative by 1H and 13C NMR spectroscopy and X-ray structure analysis. Conformational analysis about glycosidic bond of repeating units of bacterial spore cortex is based on experimental data and molecular modelling.  相似文献   

20.
The structure of the O-antigen polysaccharide from Escherichia coli O172 has been determined. In combination with sugar analysis, NMR spectroscopy shows that the polysaccharide is composed of pentasaccharide repeating units. Sequential information was obtained by mass spectrometry and two-dimensional NMR techniques. An O-acetyl group was present as 0.7 equivalent per repeating unit. Treatment of the O-deacetylated polysaccharide with aqueous 48% hydrofluoric acid rendered cleavage of the phosphodiester in the backbone of the polymer and the pentasaccharide isolated after gel permeation chromatography was structurally characterized. Subsequent NMR experiments on polymeric materials revealed the structure of the repeating unit of the O-polysaccharide from E. coli O172 as:-->P-4)-alpha-D-Glcp-(1-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D- GlcpNAc-(1-->3)-alpha-L-FucpNAc-(1-->4)-alpha-D-Glcp6Ac-(1-->  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号