首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although small ubiquitin-like modifier (SUMO) is conjugated to proteins involved in diverse cellular processes, the functional analysis of SUMOylated proteins is often hampered by low levels of specific SUMOylated proteins in the cell. Here we describe a SUMO-conjugating enzyme (Ubc9) fusion-directed SUMOylation (UFDS) system, which allows efficient and selective in vivo SUMOylation of proteins. Although SUMOylation of overexpressed p53 and STAT1 was difficult to detect in HEK293 cells, up to 40% of p53 and STAT1 were conjugated with endogenous SUMO when fused to Ubc9. We verified the specificity of UFDS using SUMOylation-site mutants and showed that the method is not dependent on SUMO ligases. Using UFDS we demonstrated that SUMOylation of STAT1 inhibits its phosphorylation at Tyr701 and discovered p53 multi-SUMOylation in vivo. We propose that UFDS will be useful for the analysis of function of SUMOylation in protein interactions, subcellular localization as well as enzymatic activity.  相似文献   

2.
Myocardial infarction triggers oxidative DNA damage, apoptosis and adverse cardiac remodeling in the heart. Small ubiquitin-like modifier (SUMO) proteins mediate post-translational SUMOylation of the cardiac proteins in response to oxidative stress signals. Upregulation of isoform SUMO2 could attenuate myocardial injury via increasing protein SUMOylation. The present study aimed to discover the identity and cardioprotective activities of SUMOylated proteins. A plasmid vector for expressing N-Strep-SUMO2 protein was generated and introduced into H9c2 rat cardiomyocytes. The SUMOylated proteins were isolated with Strep-Tactin® agarose beads and identified by MALDI-TOF-MS technology. As a result, γ-actin was identified from a predominant protein band of ~42 kDa and verified by Western blotting. The roles of SUMO2 and γ-actin SUMOylation were subsequently determined in a mouse model of myocardial infarction induced by ligating left anterior descending coronary artery and H9c2 cells challenged by hypoxia-reoxygenation. In vitro lentiviral-mediated SUMO2 expression in H9c2 cells were used to explore the role of SUMOylation of γ-actin. SUMOylation of γ-actin by SUMO2 was proven to be a new cardioprotective mechanism from the following aspects: 1) SUMO2 overexpression reduced the number of TUNEL positive cells, the levels of 8-OHdG and p-γ-H2ax while promoted the nuclear deposition of γ-actin in mouse model and H9c2 cell model of myocardial infarction; 2) SUMO-2 silencing decreased the levels of nuclear γ-actin and SUMOylation while exacerbated DNA damage; 3) Mutated γ-actin (K68R/K284R) void of SUMOylation sites failed to protect cardiomyocytes against hypoxia-reoxygenation challenge. The present study suggested that SUMO2 upregulation promoted DNA damage repair and attenuated myocardial injury via increasing SUMOylation of γ-actin in the cell nucleus.  相似文献   

3.
4.
G-protein coupled receptor interacting scaffold protein (GISP) is a multi-domain, brain-specific protein derived from the A-kinase anchoring protein (AKAP)-9 gene. Using yeast two-hybrid screens to identify GISP interacting proteins we isolated the SUMO conjugating enzyme Ubc9. GISP interacts with Ubc9 in vitro, in heterologous cells and in neurons. SUMOylation is a post-translational modification in which the small protein SUMO is covalently conjugated to target proteins, modulating their function. Consistent with its interaction with Ubc9, we show that GISP is SUMOylated by both SUMO-1 and SUMO-2 in both in vitro SUMOylation assays and in mammalian cells. Intriguingly, SUMOylation of GISP in neurons occurs in an activity-dependent manner in response to chemical LTP. These data suggest that GISP is a novel neuronal SUMO substrate whose SUMOylation status is modulated by neuronal activity.  相似文献   

5.
6.
Posttranslational modification by small ubiquitin-like modifiers (SUMO) is being associated with a growing number of regulatory functions in diverse cellular processes. The biochemical investigation into the underlying molecular mechanisms, however, has been lagging behind due to the difficulty to generate sufficient amounts of recombinant SUMOylated proteins. Here, we present two newly designed two-component vector systems for the expression and purification of SUMO-modified target proteins in Escherichia coli. One system consists of a vector for SUMO conjugation, expressing human SUMO-activating (SAE1/SAE2) and conjugating (Ubc9) enzymes together with His6-tagged SUMO1, 2 or 3, that can be combined with commonly used expression constructs for any gene of interest. To facilitate SUMOylation of targets normally requiring a SUMO-E3 ligase for efficient modification, a second system is designed to express the target protein as a fusion with the human SUMO-conjugating enzyme Ubc9, thus compensating the absence of a potential SUMO ligase. We demonstrate the proficiency of these systems by SUMOylation of two DNA repair proteins, the thymine DNA glycosylase (TDG) and XRCC1, and describe purification schemes for SUMOylated proteins in native and active form. This SUMO toolbox facilitates “in-cell” and “in-extract” production and purification of recombinant SUMO-modified target proteins for functional and structural analysis.  相似文献   

7.
8.
SUMOylation plays a crucial role in regulating diverse cellular processes including ribosome biogenesis. Proteomic analyses and experimental evidence showed that a number of nucleolar proteins involved in ribosome biogenesis are modified by SUMO. However, how these proteins are SUMOylated in cells is less understood. Here, we report that USP36, a nucleolar deubiquitinating enzyme (DUB), promotes nucleolar SUMOylation. Overexpression of USP36 enhances nucleolar SUMOylation, whereas its knockdown or genetic deletion reduces the levels of SUMOylation. USP36 interacts with SUMO2 and Ubc9 and directly mediates SUMOylation in cells and in vitro. We show that USP36 promotes the SUMOylation of the small nucleolar ribonucleoprotein (snoRNP) components Nop58 and Nhp2 in cells and in vitro and their binding to snoRNAs. It also promotes the SUMOylation of snoRNP components Nop56 and DKC1. Functionally, we show that knockdown of USP36 markedly impairs rRNA processing and translation. Thus, USP36 promotes snoRNP group SUMOylation and is critical for ribosome biogenesis and protein translation.  相似文献   

9.
10.
11.
12.
13.
The neuronal collapsin response mediator protein 2 (CRMP2) undergoes several posttranslational modifications that codify its functions. Most recently, CRMP2 SUMOylation (addition of small ubiquitin like modifier (SUMO)) was identified as a key regulatory step within a modification program that codes for CRMP2 interaction with, and trafficking of, voltage-gated sodium channel NaV1.7. In this paper, we illustrate the utility of combining sequence alignment within protein families with structural analysis to identify, from several putative SUMOylation sites, those that are most likely to be biologically relevant. Co-opting this principle to CRMP2, we demonstrate that, of 3 sites predicted to be SUMOylated in CRMP2, only the lysine 374 site is a SUMOylation client. A reduction in NaV1.7 currents was the corollary of the loss of CRMP2 SUMOylation at this site. A 1.78-Å-resolution crystal structure of mouse CRMP2 was solved using X-ray crystallography, revealing lysine 374 as buried within the CRMP2 tetramer interface but exposed in the monomer. Since CRMP2 SUMOylation is dependent on phosphorylation, we postulate that this state forces CRMP2 toward a monomer, exposing the SUMO site and consequently, resulting in constitutive regulation of NaV1.7.  相似文献   

14.
15.
16.
SUMOylation, the covalent attachment of a member of the small ubiquitin‐like modifier (SUMO) family of proteins to lysines in target substrates, is an essential post‐translational modification in eukaryotes. Microbial manipulation of SUMOylation recently emerged as a key virulence strategy for viruses and facultative intracellular bacteria, the latter of which have only been shown to deploy effectors that negatively regulate SUMOylation. Here, we demonstrate that the obligate intracellular bacterium, Anaplasma phagocytophilum, utilizes an effector, AmpA (A. phagocytophilum post‐translationally modified protein A) that becomes SUMOylated in host cells and this is important for the pathogen's survival. We previously discovered that AmpA (formerly APH1387) localizes to the A. phagocytophilum‐occupied vacuolar membrane (AVM). Algorithmic prediction analyses denoted AmpA as a candidate for SUMOylation. We verified this phenomenon using a SUMO affinity matrix to precipitate both native AmpA and ectopically expressed green fluorescent protein (GFP)‐tagged AmpA. SUMOylation of AmpA was lysine dependent, as SUMO affinity beads failed to precipitate a GFP‐AmpA protein when its lysine residues were substituted with arginine. Ectopically expressed and endogenous AmpA were poly‐SUMOylated, which was consistent with the observation that AmpA colocalizes with SUMO2/3 at the AVM. Only late during the infection cycle did AmpA colocalize with SUMO1, which terminally caps poly‐SUMO2/3 chains. AmpA was also detected in the cytosol of infected host cells, further supporting its secretion and likely participation in interactions that aid pathogen survival. Indeed, whereas siRNA‐mediated knockdown of Ubc9 – a necessary enzyme for SUMOylation – slightly bolstered A. phagocytophilum infection, pharmacologically inhibiting SUMOylation in infected cells significantly reduced the bacterial load. Ectopically expressed GFP‐AmpA served as a competitive agonist against native AmpA in infected cells, while lysine‐deficient GFP‐AmpA was less effective, implying that modification of AmpA lysines is important for infection. Collectively, these data show that AmpA becomes directly SUMOylated during infection, representing a novel tactic for A. phagocytophilum survival.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号