首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interferon (IFN)-induced promyelocytic leukemia (PML) protein is specifically associated with nuclear bodies (NBs) whose functions are yet unknown. Two of the NB-associated proteins, PML and Sp100, are induced by IFN. Here we show that overexpression of PML and not Sp100 induces resistance to infections by vesicular stomatitis virus (VSV) (a rhabdovirus) and influenza A virus (an orthomyxovirus) but not by encephalomyocarditis virus (a picornavirus). Inhibition of viral multiplication was dependent on both the level of PML expression and the multiplicity of infection and reached 100-fold. PML was shown to interfere with VSV mRNA and protein synthesis. Compared to the IFN mediator MxA protein, PML had less powerful antiviral activity. While nuclear body localization of PML did not seem to be required for the antiviral effect, deletion of the PML coiled-coil domain completely abolished it. Taken together, these results suggest that PML can contribute to the antiviral state induced in IFN-treated cells.  相似文献   

2.
PML and PML nuclear bodies: implications in antiviral defence   总被引:1,自引:0,他引:1  
Everett RD  Chelbi-Alix MK 《Biochimie》2007,89(6-7):819-830
  相似文献   

3.
Mx proteins form a small family of interferon (IFN)-induced GTPases with potent antiviral activity against various negative-strand RNA viruses. To examine the antiviral spectrum of human MxA in homologous cells, we stably transfected HEp-2 cells with a plasmid directing the expression of MxA cDNA. HEp-2 cells are permissive for many viruses and are unable to express endogenous MxA in response to IFN. Experimental infection with various RNA and DNA viruses revealed that MxA-expressing HEp-2 cells were protected not only against influenza virus and vesicular stomatitis virus (VSV) but also against Semliki Forest virus (SFV), a togavirus with a single-stranded RNA genome of positive polarity. In MxA-transfected cells, viral yields were reduced up to 1,700-fold, and the degree of inhibition correlated well with the expression level of MxA. Furthermore, expression of MxA prevented the accumulation of 49S RNA and 26S RNA, indicating that SFV was inhibited early in its replication cycle. Very similar results were obtained with MxA-transfected cells of the human monocytic cell line U937. The results demonstrate that the antiviral spectrum of MxA is not restricted to negative-strand RNA viruses but also includes SFV, which contains an RNA genome of positive polarity. To test whether MxA protein exerts its inhibitory activity against SFV in the absence of viral structural proteins, we took advantage of a recombinant vector based on the SFV replicon. The vector contains only the coding sequence for the viral nonstructural proteins and the bacterial LacZ gene, which was cloned in place of the viral structural genes. Upon transfection of vector-derived recombinant RNA, expression of the β-galactosidase reporter gene was strongly reduced in the presence of MxA. This finding indicates that viral components other than the structural proteins are the target of MxA action.  相似文献   

4.
PML nuclear bodies (NBs) are dynamic intranuclear structures harboring numerous transiently or permanently localized proteins. PML, the NBs' organizer, is directly induced by interferon, and its expression is critical for antiviral host defense. We describe herein the molecular events following poliovirus infection that lead to PML-dependent p53 activation and protection against virus infection. Poliovirus infection induces PML phosphorylation through the extracellular signal-regulated kinase pathway, increases PML SUMOylation, and induces its transfer from the nucleoplasm to the nuclear matrix. These events result in the recruitment of p53 to PML NBs, p53 phosphorylation on Ser15, and activation of p53 target genes leading to the induction of apoptosis. Moreover, the knock-down of p53 by small interfering RNA results in higher poliovirus replication, suggesting that p53 participates in antiviral defense. This effect, which requires the presence of PML, is transient since poliovirus targets p53 by inducing its degradation in a proteasome- and MDM2-dependent manner. Our results provide evidence of how poliovirus counteracts p53 antiviral activity by regulating PML and NBs, thus leading to p53 degradation.  相似文献   

5.
6.
Effects of type I interferons on Friend retrovirus infection   总被引:1,自引:0,他引:1  
The type I interferon (IFN) response plays an important role in the control of many viral infections. However, since there is no rodent animal model for human immunodeficiency virus, the antiviral effect of IFN-alpha and IFN-beta in retroviral infections is not well characterized. In the current study we have used the Friend virus (FV) model to determine the activity of type I interferons against a murine retrovirus. After FV infection of mice, IFN-alpha and IFN-beta could be measured between 12 and 48 h in the serum. The important role of type I IFN in the early immune defense against FV became evident when mice deficient in IFN type I receptor (IFNAR(-/-)) or IFN-beta (IFN-beta(-/-)) were infected. The levels of FV infection in plasma and in spleen were higher in both strains of knockout mice than in C57BL/6 wild-type mice. This difference was induced by an antiviral effect of IFN-alpha and IFN-beta and was most likely mediated by antiviral enzymes as well as by an effect of these IFNs on T-cell responses. Interestingly, the lack of IFNAR and IFN-beta enhanced viral loads during acute and chronic FV infection. Exogenous IFN-alpha could be used therapeutically to reduce FV replication during acute but not chronic infection. These findings indicate that type I IFN plays an important role in the immediate antiviral defense against Friend retrovirus infection.  相似文献   

7.
Thogoto and Dhori viruses are tick-borne orthomyxoviruses infecting humans and livestock in Africa, Asia, and Europe. Here, we show that human MxA protein is an efficient inhibitor of Thogoto virus but is inactive against Dhori virus. When expressed in the cytoplasm of stably transfected cell lines, MxA protein interfered with the accumulation of Thogoto viral RNA and proteins. Likewise, MxA(R645), a mutant MxA protein known to be active against influenza virus but inactive against vesicular stomatitis virus, was equally efficient in blocking Thogoto virus growth. Hence, a common antiviral mechanism that is distinct from the antiviral action against vesicular stomatitis virus may operate against both influenza virus and Thogoto virus. When moved to the nucleus with the help of a foreign nuclear transport signal, MxA(R645) remained active against Thogoto virus, indicating that a nuclear step of virus replication was inhibited. In contrast, Dhori virus was not affected by wild-type or mutant MxA protein, indicating substantial differences between these two tick-transmitted orthomyxoviruses. Human MxB protein had no antiviral activity against either virus.  相似文献   

8.
9.
The high pathogenicity of Lassa virus is assumed to involve resistance to the effects of interferon (IFN). We have analyzed the effects of alpha IFN (IFN-alpha), IFN-gamma, and tumor necrosis factor alpha (TNF-alpha) on replication of Lassa virus compared to the related, but less pathogenic, lymphocytic choriomeningitis virus (LCMV). Three low-passage Lassa virus strains (AV, NL, and CSF), isolated from humans with mild to fulminant Lassa fever, were tested. Lassa virus replication was inhibited by IFN-alpha and IFN-gamma, but not TNF-alpha, in Huh7 and Vero cells. The degree of IFN sensitivity of a Lassa virus isolate did not correlate with disease severity in human patients. Furthermore, cytokine effects observed for Lassa virus and LCMV (strains CH-5692, Armstrong, and WE) were similar. To address the mechanisms involved in the IFN effect, we used cell lines in which overexpression of IFN-stimulated proteins promyelocytic leukemia protein (PML) and Sp100 could be induced. Both proteins reside in PML bodies, a cellular target of the LCMV and Lassa virus Z proteins. Overexpression of PML or Sp100 did not affect replication of either virus. This, together with the previous finding that PML knockout facilitates LCMV replication in vitro and in vivo (M. Djavani, J. Rodas, I. S. Lukashevich, D. Horejsh, P. P. Pandolfi, K. L. Borden, and M. S. Salvato, J. Virol. 75:6204-6208, 2001; W. V. Bonilla, D. D. Pinschewer, P. Klenerman, V. Rousson, M. Gaboli, P. P. Pandolfi, R. M. Zinkernagel, M. S. Salvato, and H. Hengartner, J. Virol. 76:3810-3818, 2002), describes PML as a mediator within the antiviral pathway rather than as a direct effector protein. In conclusion, the high pathogenicity of Lassa virus compared to LCMV is probably not due to increased resistance to the effects of IFN-alpha or IFN-gamma. Both cytokines inhibit replication which is relevant for the design of antiviral strategies against Lassa fever with the aim of enhancing the IFN response.  相似文献   

10.
11.
Spumaviruses, commonly called foamy viruses, are complex retroviruses that establish life-long persistent infections in the absence of accompanying pathology. Depending upon cell type, infection of cells in tissue culture cells can result in either lytic replication, persistence, or latency. The cellular factors that mediate foamy virus (FV) latency are poorly understood. In this study we show that the only known inhibitor of FV replication, the promyelocytic leukemia protein (PML), which binds the FV transactivator (Tas), does not play an important role in FV latency in vitro. We found no significant differences in PML levels in cells that supported lytic replication compared to those that were latently infected. Furthermore, endogenous PML levels did not change following exposure to phorbol myristate acetate (PMA), which induces FV replication. We demonstrated that FV replication proceeded in the presence of substantial levels of PML, both in fully permissive cells and during reactivation of latent FV. Endogenous PML did not efficiently colocalize with Tas, even after upregulation by alpha interferon (IFN-alpha) treatment. IFN-alpha did, however, partially suppress the reactivation of latent FV by PMA. Finally, depletion of endogenous PML by small interfering RNA did not promote activation of FV in cells that responded to PMA treatment. Taken together, these data indicate that endogenous PML does not play an important role in mediating FV latency.  相似文献   

12.
The induction of an interferon-induced antiviral state is a powerful cellular response against viral infection that limits viral spread. Here, we show that a preexisting antiviral state inhibits the replication of influenza A viruses in human A549 cells by preventing transport of the viral genome to the nucleus and that the interferon-induced MxA protein is necessary but not sufficient for this process. This represents a previously unreported antiviral function of MxA against influenza A virus infection.  相似文献   

13.
The human MxA protein is part of the antiviral state induced by alpha/beta interferon (IFN-alpha/beta). MxA inhibits the multiplication of several RNA viruses in cell culture. However, its antiviral potential in vivo has not yet been fully explored. We have generated MxA-transgenic mice that lack a functional IFN system by crossing MxA-transgenic mice constitutively expressing MxA with genetically targeted (knockout) mice lacking the beta subunit of the IFN-alpha/beta receptor (IFNAR-1(-/-) mice). These mice are an ideal animal model to investigate the unique antiviral activity of human MxA in vivo, because they are unable to express other IFN-induced proteins. Here, we show that MxA confers resistance to Thogoto virus, La Crosse virus, and Semliki Forest virus. No Thogoto virus progeny was detectable in MxA-transgenic mice, indicating an efficient block of virus replication at the primary site of infection. In the case of La Crosse virus, MxA restricted invasion of the central nervous system. In contrast, Semliki Forest virus multiplication in the brain was detectable in both MxA-expressing and nonexpressing IFNAR-1(-/-) mice. However, viral titers were clearly reduced in MxA-transgenic mice. Our results demonstrate that MxA does not need the help of other IFN-induced proteins for activity but is a powerful antiviral agent on its own. Moreover, the results suggest that MxA may protect humans from potential fatal infections by La Crosse virus and other viral pathogens.  相似文献   

14.
Mx proteins are interferon-induced large GTPases, some of which have antiviral activity against a variety of viruses. The murine Mx1 protein accumulates in the nucleus of interferon-treated cells and is active against members of the Orthomyxoviridae family, such as the influenza viruses and Thogoto virus. The mechanism by which Mx1 exerts its antiviral action is still unclear, but an involvement of undefined nuclear factors has been postulated. Using the yeast two-hybrid system, we identified cellular proteins that interact with Mx1 protein. The Mx1 interactors were mainly nuclear proteins. They included Sp100, Daxx, and Bloom's syndrome protein (BLM), all of which are known to localize to specific subnuclear domains called promyelocytic leukemia protein nuclear bodies (PML NBs). In addition, components of the SUMO-1 protein modification system were identified as Mx1-interacting proteins, namely the small ubiquitin-like modifier SUMO-1 and SAE2, which represents subunit 2 of the SUMO-1 activating enzyme. Analysis of the subcellular localization of Mx1 and some of these interacting proteins by confocal microscopy revealed a close spatial association of Mx1 with PML NBs. This suggests a role of PML NBs and SUMO-1 in the antiviral action of Mx1 and may allow us to discover novel functions of this large GTPase.  相似文献   

15.
The intrinsic antiviral defense is based on cellular restriction factors that are constitutively expressed and, thus, active even before a pathogen enters the cell. The promyelocytic leukemia (PML) nuclear bodies (NBs) are discrete nuclear foci that contain several cellular proteins involved in intrinsic antiviral responses against a number of viruses. Accumulating reports have shown the importance of PML as a DNA virus restriction factor and how these pathogens evade this antiviral activity. However, very little information is available regarding the antiviral role of PML against RNA viruses. Dengue virus (DENV) is an RNA emerging mosquito-borne human pathogen affecting millions of individuals each year by causing severe and potentially fatal syndromes. Since no licensed antiviral drug against DENV infection is currently available, it is of great importance to understand the factors mediating intrinsic immunity that may lead to the development of new pharmacological agents that can boost their potency and thereby lead to treatments for this viral disease. In the present study, we investigated the in vitro antiviral role of PML in DENV-2 A549 infected cells.  相似文献   

16.
17.
It is well established that interferon-alpha can induce non-cytotoxic intracellular suppression of hepatitis B virus replication, but the mechanisms involved are unclear. Cell culture studies to characterize these mechanisms are restricted, in part because hepatitis B virus replicates almost exclusively in liver-derived cells. To overcome this limitation we used a cytomegalovirus promoter-controlled hepatitis B virus expression system, which leads to intracellular viral replication even in non-hepatic cell lines. In this experimental system interferon-alpha treatment specifically suppressed viral replication demonstrating that antiviral activities against hepatitis B virus are not restricted to hepatic cells. Furthermore, the interferon-inducible MxA protein was recently reported to play a key role in the antiviral action of interferon-alpha against hepatitis B virus. Our data demonstrate that interferon-alpha also suppresses hepatitis B virus replication in MxA-deficient HEp2 cells, indicating that MxA is not essential for these activities. Taken together, our data imply that the experimental approach presented can also be adapted to established cell lines which are deficient in parts of the signal transduction pathway or other elements located further downstream, providing important insights into mechanisms specifically suppressing hepatitis B virus.  相似文献   

18.
Promyelocytic leukemia protein (PML) has antiviral functions and many viruses encode gene products that disrupt PML nuclear bodies (PML NBs). However, evidence of the relevance of PML NB modification for viral pathogenesis is limited and little is known about viral gene functions required for PML NB disruption in infected cells in vivo. Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes cutaneous lesions during primary and recurrent infection. Here we show that VZV disrupts PML NBs in infected cells in human skin xenografts in SCID mice and that the disruption is achieved by open reading frame 61 (ORF61) protein via its SUMO-interacting motifs (SIMs). Three conserved SIMs mediated ORF61 binding to SUMO1 and were required for ORF61 association with and disruption of PML NBs. Mutation of the ORF61 SIMs in the VZV genome showed that these motifs were necessary for PML NB dispersal in VZV-infected cells in vitro. In vivo, PML NBs were highly abundant, especially in basal layer cells of uninfected skin, whereas their frequency was significantly decreased in VZV-infected cells. In contrast, mutation of the ORF61 SIMs reduced ORF61 association with PML NBs, most PML NBs remained intact and importantly, viral replication in skin was severely impaired. The ORF61 SIM mutant virus failed to cause the typical VZV lesions that penetrate across the basement membrane into the dermis and viral spread in the epidermis was limited. These experiments indicate that VZV pathogenesis in skin depends upon the ORF61-mediated disruption of PML NBs and that the ORF61 SUMO-binding function is necessary for this effect. More broadly, our study elucidates the importance of PML NBs for the innate control of a viral pathogen during infection of differentiated cells within their tissue microenvironment in vivo and the requirement for a viral protein with SUMO-binding capacity to counteract this intrinsic barrier.  相似文献   

19.
Upon cell entry, the genomes of herpes simplex virus type 1 (HSV-1) and adenovirus (Ad) associate with distinct nuclear structures termed ND10 or promyelocytic leukemia (PML) nuclear bodies (NBs). PML NB morphology is altered or disrupted by specific viral proteins as replication proceeds. We examined whether adeno-associated virus (AAV) replication compartments also associate with PML NBs, and whether modification or disruption of these by HSV-1 or Ad, both of which are helper viruses for AAV, is necessary at all. Furthermore, to add a fourth dimension to our present view of AAV replication, we established an assay that allows visualization of AAV replication in live cells. A recombinant AAV containing 40 lac repressor binding sites between the AAV inverted terminal repeats was constructed. AAV Rep protein and helper virus-mediated replication of this recombinant AAV genome was visualized by binding of enhanced yellow fluorescent protein-lac repressor fusion protein to double-stranded AAV replication intermediates. We demonstrate in live cells that AAV DNA replication occurs in compartments which colocalize with AAV Rep. Early after infection, the replication compartments were small and varied in numbers from 2 to more than 40 per cell nucleus. Within 4 to 8 h, individual small replication compartments expanded and fused to larger structures which filled out much of the cell nucleus. We also show that AAV replication compartments can associate with modified PML NBs in Ad-infected cells. In wild-type HSV-1-infected cells, AAV replication compartments and PML NBs did not coexist, presumably because PML was completely disrupted by the HSV-1 ICP0 protein. However, alteration or disruption of PML appears not to be a prerequisite for AAV replication, as the formation of replication compartments was normal when the ICP0 mutants HSV-1 dl1403 and HSV-1 FXE, which do not affect PML NBs, were used as the helper viruses; under these conditions, AAV replication compartments did not associate with PML NBs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号