首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
 The cooperative effect of anions and proton concentration on the EPR spectroscopic properties of the ferrous nitrosylated derivative of monomeric Mb from loggerhead sea turtle (Caretta caretta), sperm whale (Physeter catodon), and horse (Caballus caballus) has been investigated between pH 4.5 and 9.0, at 100 K. In the absence of anions, an EPR spectrum characteristic of the hexa-coordinated species of ferrous nitrosylated Mb with an axial geometry is observed, which is unaffected by pH. On the other hand, a transition toward a species characterized by an EPR spectrum corresponding to a hexa-coordinated rhombic geometry takes place in the presence of phosphate, acetate, citrate, sulfate, and chloride. Only the hexa-coordinated form characterized by the rhombic EPR spectrum appears then to undergo a pH-dependent transition toward the penta-coordinated species. Present results show clear-cut evidence for the spectroscopic coupling of proton and anion binding sites with the Mb reactive center, indicating that an allosteric mechanism might modulate the proximal HisF8-heme-NO geometry in monomeric hemoproteins. Received: 15 December 1997 / Accepted: 15 June 1998  相似文献   

2.
 The X-band EPR spectroscopic features of the ferrous nitrosylated derivative of α(Fe)2β(Co)2 and of α(Co)2β(Fe)2 metal hybrids of human hemoglobin (Hb) have been investigated at pH 7.0 and analyzed in parallel with those of the native nitrosylated tetramer (HbNO). The effect of 2,3-biphosphoglycerate (BPG), inositol hexakisphosphate (IHP) and bezafibrate (BZF) has been investigated in order to understand the perturbations induced on α and β subunits in the tetramer by the binding of allosteric effectors. A large perturbation is observed in both subunits upon BZF binding, while in the case of IHP only α-chains are affected; on the other hand, BPG leaves both chains essentially unperturbed. Thus, different binding modes of allosteric effectors to HbNO may occur, and the simultaneous addition of two effector molecules, namely BPG and BZF or IHP and BZF to HbNO, brings about different alterations of the X-band EPR spectroscopic properties. This behavior indicates that the intramolecular communication pathway(s) between the heme and the binding pockets of the heterotropic ligands (i.e., IHP and BZF, or BPG and BZF) are different, leading to distinct structural perturbations. Received: 19 September 1997 / Accepted: 16 December 1997  相似文献   

3.
The effect of proflavine (3,6-diaminoacridine), an antiseptic drug, on the spectroscopic and oxygen binding properties of ferrous human adult hemoglobin (Hb) has been investigated. Upon binding of proflavine to the nitric oxide derivative of ferrous human adult hemoglobin (HbNO), the X-band EPR spectrum displays the characteristics which have been attributed to the T-state of the ligated tetramer. In parallel, oxygen affinity for the deoxygenated derivative of ferrous human adult Hb decreases in the presence of proflavine. The effect of proflavine on the spectroscopic and ligand binding properties of ferrous human adult Hb is reminiscent that of 2,3-D-glycerate bisphosphate, the physiological modulator of Hb action.  相似文献   

4.
The spectroscopic (EPR and absorbance) properties of the nitric oxide derivative of ferrous man, horse, buffalo, deer, mouflon, musk ox, ox, and reindeer hemoglobin (HbNO) have been investigated in the absence of any allosteric effector at pH 6.5 (in 0.1 M 2-[N-morpholino]ethanesulphonic acid/NaOH chloride-free buffer system), as well as at 100 K and/or 20 degrees C. Man and horse HbNO show spectroscopic properties that are generally taken as typical of the high affinity state of ferrous tetrameric Hb's; on the other hand, the spectroscopic properties of ruminant (i.e., buffalo, deer, mouflon, musk ox, ox, and reindeer) HbNO are characteristic of the low affinity conformation. These results are in keeping with the functional properties of the mammalian Hb's considered and have been related to the peculiar low oxygen affinity of ruminant Hb's.  相似文献   

5.
Serum high and low density lipoproteins, albumin, and hemopexin (HDL, LDL, SA, and HPX, respectively) serve as traps of toxic plasma heme and participate in its complete clearance by transportation to the liver. Moreover, SA-(heme) and HPX-heme have been proposed to facilitate NO scavenging in vivo. Here, the EPR-spectroscopic properties of ferrous nitrosylated heme-human high and low density lipoproteins (HDL-heme-NO and LDL-heme-NO, respectively) as well as of ferrous nitrosylated heme-rabbit serum hemopexin (HPX-heme-NO) are reported and analyzed in parallel with those of ferrous nitrosylated heme-human serum albumin (SA-heme-NO). HDL-heme-NO and LDL-heme-NO as well as SA-heme-NO, in the absence of allosteric effectors (i.e., N-form), are five-coordinate heme-iron species, characterized by the three-line splitting observed in the high magnetic field region of the X-band EPR spectrum. On the other hand, SA-heme-NO, in the presence of drugs (i.e., B-form), and HPX-heme-NO are six-coordinate heme-iron species, characterized by an X-band EPR spectrum with an axial geometry. The heme-iron coordination state of HDL-heme-NO, LDL-heme-NO, SA-heme-NO, and HPX-heme-NO is in keeping with values of ferric heme dissociation rate constants which decrease in the following order: LDL>HDL>SA>HPX. Altogether, these observations suggest that HPX displays a cleft much more suitable for heme binding than other heme-carriers.  相似文献   

6.
The effect of bezafibrate (BZF) and clofibric acid (CFA) on the spectroscopic (EPR and absorbance) properties of the nitric oxide derivative of ferrous human hemoglobin (HbNO) has been investigated quantitatively. In the presence of BZF and CFA, the X-band EPR spectra and the absorption spectra in the Soret region of HbNO display the same basic characteristics described in the presence of inositol hexakisphosphate (IHP) and 2, 3-diphosphoglycerate (2,3-DPG). Next, in the presence of these allosteric effectors, the oxygen affinity for ferrous human hemoglobin (Hb) is reduced. These findings indicate that BZF and CFA, as already reported for IHP and 2, 3-DPG, induce the stabilization of a low affinity conformation of the ligated hemoprotein (i.e., HbNO). Values of the apparent equilibrium constant for BZF and CFA binding to HbNO (K) are 1.5(+/- 0.2) x 10(-2) M and 2.8(+/- 0.3) x 10(-2) M, respectively, at pH 7.0 (in 0.1 M N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]/NaOH buffer system plus 0.1 M NaCl) and 20 degrees C. The results reported here represent clearcut evidence for BZF and CFA specific (i.e., functionally relevant) binding to a ligated derivative of Hb (i.e., HbNO).  相似文献   

7.
The cooperative effect of inositol hexakisphosphate (IHP), bezafibrate (BZF), and clofibric acid (CFA) on the spectroscopic (EPR and absorbance) properties of the nitric oxide derivative of ferrous human hemoglobin (HbNO) has been investigated quantitatively. In the presence of IHP, BZF, and CFA, the X-band EPR spectra and the absorption spectra in the Soret region of HbNO display the same basic characteristics described in the presence of 2,3-diphosphoglycerate (2,3-DPG), which have been attributed to a low affinity conformation of the tetramer. Addition to HbNO of two allosteric effectors together (such as IHP and BZF, or IHP and CFA) further stabilizes the low affinity conformation of the ligated hemoprotein (i.e., HbNO). Moreover, in the presence of saturating amounts of IHP, the affinity of BZF and CFA for HbNO increases by about fifteenfold. Likewise, in the presence of both IHP and BZF, as well as in IHP and CFA, the oxygen affinity for ferrous human hemoglobin (Hb) is reduced with respect to that observed in the presence of IHP, BZF, or CFA alone, which in turn is lower than that reported in the absence of any allosteric effector. All the data were obtained at pH 7.0 (in 1.0 × 10−1 M N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulfonic acid]/NaOH buffer system plus 1.0 × 10−1 M NaCl), as well as at 100 K and/or 20°C. The results here reported represent clearcut evidence for the cooperative and specific (i.e., functionally relevant) binding of IHP, BZF, and CFA to Hb.  相似文献   

8.
The effect of bezafibrate (BZF) and clofibrate (CF), two therapeutic drugs displaying anticoagulant and antihyperlipoproteinemic activities, on the EPR-spectroscopic properties of ferrous nitrosylated heme-human serum albumin (HSA-heme-NO) has been investigated. In the absence of BZF and CF, HSA-heme-NO is a five-coordinate heme-iron system, characterised by an X-band EPR spectrum with a three-line splitting in the high magnetic field region. Addition of BZF and CF to HSA-heme-NO induced the transition towards a six-coordinate heme-iron species characterised by an X-band EPR spectrum with an axial geometry. These data indicate that HSA-heme-NO is a five-coordinate heme-iron system, BZF and CF acting as allosteric effectors, and show that the primary heme binding site and the CF cleft of HSA are conformationally-linked, regardless of their different location.  相似文献   

9.
Hemopexin (HPX) serves as a trap for toxic plasma heme, ensuring its complete clearance by transportation to the liver. Moreover, HPX-heme has been postulated to play a key role in the homeostasis of nitric oxide (NO). Here, the thermodynamics for NO binding to rabbit ferrous HPX-heme as well as the EPR and optical absorption spectroscopic properties of rabbit ferrous nitrosylated HPX-heme (HPX-heme-NO) are reported. The value of the dissociation equilibrium constant for NO binding to rabbit ferrous HPX-heme (i.e., H) is (1.4±0.2)×10–7 M, at pH 7.0 and 10.0 °C; the value of H is unaffected by sodium chloride. At pH 7.0, rabbit ferrous HPX-heme-NO is a six-coordinate heme-iron species, characterized by an X-band EPR spectrum with an axial geometry and by =146 mM–1 cm–1 at 419 nm. At pH 4.0, rabbit ferrous HPX-heme-NO is a five-coordinate heme-iron species, characterized by an X-band EPR spectrum with three-line splitting centered at 334 mT and by =74 mM–1 cm–1 at 387 nm. The pKa value of the reversible pH-induced six- to five-coordinate spectroscopic transition is 4.8±0.1 in the absence of sodium chloride and 4.3±0.1 in the presence of 1.5×10–1 M sodium chloride. This result is in agreement with the effect of sodium chloride on rabbit HPX-heme stability. The present data have been analyzed in parallel with those of a related heme model compound and heme-protein systems.  相似文献   

10.
Impaired nitric oxide (NO)–dependent endothelial function is associated with the development of cardiovascular diseases. We hypothesized that erythrocyte levels of nitrosylated hemoglobin (HbNO-heme) may reflect vascular endothelial function in vivo. We developed a modified subtraction method using Electron Paramagnetic Resonance (EPR) spectroscopy to identify the 5-coordinate α-HbNO (HbNO) concentration in human erythrocytes and examined its correlation with endothelial function assessed by peripheral arterial tonometry (PAT). Changes in digital pulse amplitude were measured by PAT during reactive hyperemia following brachial arterial occlusion in a group of healthy volunteers (50 subjects). Erythrocyte HbNO levels were measured at baseline and at the peak of hyperemia. We digitally subtracted an individual model EPR signal of erythrocyte free radicals from the whole EPR spectrum to unmask and quantitate the HbNO EPR signals.

Results

Mean erythrocyte HbNO concentration at baseline was 219+/−12 nmol/L (n = 50). HbNO levels and reactive hyperemia (RH) indexes were higher in female (free of contraceptive pills) than male subjects. We observed a dynamic increase of HbNO levels in erythrocytes isolated at 1–2 min of post-occlusion hyperemia (120+/−8% of basal levels); post-occlusion HbNO levels were correlated with basal levels. Both basal and post-occlusion HbNO levels were significantly correlated with reactive hyperemia (RH) indexes (r = 0.58; P<0.0001 for basal HbNO).

Conclusion

The study demonstrates quantitative measurements of 5-coordinate α-HbNO in human venous erythrocytes, its dynamic physiologic regulation and correlation with endothelial function measured by tonometry during hyperemia. This opens the way to further understanding of in vivo determinants of NO bioavailability in human circulation.  相似文献   

11.
The measurement of hemoglobin-nitric oxide (NO) adduct (HbNO) in whole blood by the electron paramagnetic resonance (EPR) method seems relevant for the assessment of systemic NO levels. However, ceruloplasmin and unknown radical species overlap the same magnetic field as that of HbNO. To reveal the EPR spectrum of HbNO, we then introduced the EPR signal subtraction method, which is based on the computer-assisted subtraction of the digitized EPR spectrum of HbNO-depleted blood from that of sample blood using the software. Rats were treated with N(omega)-nitro-L-arginine methyl ester (L-NAME; 120 mg. kg-1. day-1) for 1 wk to obtain HbNO-depleted blood. When this method was applied to the analysis of untreated fresh whole blood, the five-coordinate state of HbNO was observed. HbNO concentration in pentobarbital-anesthetized rats was augmented (change in [HbNO] = 1.6-5.5 microM) by infusion of L-arginine (0.2-0.6 g/kg) but not D-arginine. Using this method, we attempted to evaluate the effects of temocapril on HbNO dynamics in an L-NAME-induced rat endothelial dysfunction model. The oral administration of L-NAME for 2 wk induced a serious hypertension, and the HbNO concentration was reduced (change in [HbNO] = 5.7 microM). Coadministration of temocapril dose dependently improved both changes in blood pressure and the systemic HbNO concentration. In this study, we succeeded in measuring the blood HbNO level as an index of NO by the EPR HbNO signal subtraction method. We also demonstrated that temocapril improves abnormalities of NO dynamics in L-NAME-induced endothelial dysfunction rats using the EPR HbNO signal subtraction method.  相似文献   

12.
The pH dependence of the electron paramagnetic resonance (EPR) spectrum and oxygen affinity of cobaltous porphyrin-containing myoglobin (CoMb) have been examined. The hyperfine structures of the EPR spectrum of oxy-CoMb undergo small, reversible pH-dependent changes with pK values of 5.33, 5.55, and 5.25 +/- 0.05 for proto-, meso-, and deutero-CoMb's, respectively, whereas deoxy-CoMb does not exhibit any pH dependence of its EPR spectrum. The partial pressure of oxygen at half-saturation of proto-CoMb decreases from 26 to 42 Torr on lowering the pH from 7.0 to 4.8. For comparison, we have prepared cobaltous porphyrin-containing monomeric Glycera hemoglobin (CoHb (Glycera)), in which the distal histidyl group of myoglobin is replaced by a leucyl residue, and examined the equilibria and kinetics of its oxygenation and EPR spectrum. CoHb (Glycera) has exhibited a very low oxygen affinity (p50 = 7 X 10(2) Torr at 5 degrees) and a large dissociation rate constant (more than 8 X 10(4) S-1 at 5 degrees). The EPR spectrum of oxy-CoHb (Glycera) was affected by neither pH nor replacement of H2O with D2O. Low temperature photodissociation studies by EPR and spectrophotometry have shown that the photolyzed form of the ligated hemoglobin (Glycera) is similar to its deoxy form, in contrast to myoglobin which gives a new intermediate states as the photolyzed form. These differences between CoMb and CoHb (Glycera) are interpreted with relation to the possible role of the distal histidyl residue in CoMb.  相似文献   

13.
The kinetics and spectroscopic properties of the single polypeptide and proteolytically cleaved form of recombinant Fe(3+)Fe(2+) human purple acid phosphatase (recHPAP) exhibit significant differences, primarily due to a difference in pK(es,1) (the value of an acid dissociation constant of the ES complex). These differences are due to the presence or absence, respectively, of an interaction between an aspartate residue in an exposed loop of the protein and one or more active site residues. To further explore the origin of these differences, the ferrous ion of recHPAP has been replaced by zinc. Analysis of the reconstituted Fe(3+)Zn(2+)recHPAP reveals an unexpected catalytic activity versus pH profile, in that the optimal pH is 6.3, similar to that of the proteolytically cleaved form (6.5). Moreover, replacement of the ferrous ion by zinc increases the turnover number more than 10-fold; the pK(es) values are also shifted as expected for the change in the divalent metal ion. Although the EPR spectra of both single polypeptide and proteolytically cleaved Fe(3+)Zn(2+)-recHPAP are independent of pH over the range 4.5-6.2, the visible spectrum of Fe(3+)Zn(2+)-recHPAP is pH dependent. These results suggest that the properties and environment of the divalent metal are important in determining the catalytic properties of mammalian PAPs, and in particular that a solvent molecule coordinated to the divalent metal ion may play a critical role in the catalytic cycle of these enzymes.  相似文献   

14.
The reactions of nitric oxide with hemoglobin play an important role in explaining the vascular biology of this free radical. It is perhaps surprising that the level of nitrosylhemoglobin (HbNO) in which NO is bound to the ferrous hemoglobin heme in whole human blood under basal and stimulated conditions is a matter of some controversy, with measurements ranging from <1 nm to close to 10 mum. In order to examine HbNO levels in human blood by using EPR spectroscopy, we have developed a regression-based spectral analysis technique that has a detection level of about 200 nm HbNO. We have utilized this methodology to detect the level of HbNO under basal conditions and during NO inhalation. The major findings of this study are as follows. (i) HbNO can be accurately detected and quantified in whole blood with a detection limit of approximately 200 nm. (ii) By using regression analysis, levels of HbNO as low as 0.5-1 mum can be deconvoluted into component species. (iii) HbNO is present at less than 200 nm at basal conditions in both arterial and venous blood and is formed at a level of 0.5-2.5 mum upon inhalation of 80 ppm NO. (iv) The levels of HbNO detected by EPR are remarkably close (within a factor of 2) to those detected by tri-iodide-based chemiluminescence and much smaller than those detected by photolysis chemiluminescence. (v) The half-time of HbNO in vivo is approximately 40 min.  相似文献   

15.
Samples CR  Howard T  Raushel FM  DeRose VJ 《Biochemistry》2005,44(33):11005-11013
Phosphotriesterase (PTE) is a binuclear metalloenzyme that catalyzes the hydrolysis of organophosphates, including pesticides and chemical warfare agents, at rates approaching the diffusion controlled limit. The catalytic mechanism of this enzyme features a bridging solvent molecule that is proposed to initiate nucleophilic attack at the phosphorus center of the substrate. X-band EPR spectroscopy is utilized to investigate the active site of Mn/Mn-substituted PTE. Simulation of the dominant EPR spectrum from the coupled binuclear center of Mn/Mn-PTE requires slightly rhombic zero-field splitting parameters. Assuming that the signal arises from the S = 2 manifold, an exchange coupling constant of J = -2.7 +/- 0.2 cm(-)(1) (H(ex) = -2JS(1) x S(2)) is calculated. A kinetic pK(a) of 7.1 +/- 0.1 associated with loss in activity at low pH indicates that a protonation event is responsible for inhibition of catalysis. Analysis of changes in the EPR spectrum as a function of pH provides a pK(a) of 7.3 +/- 0.1 that is assigned as the protonation of the hydroxyl bridge. From the comparison of kinetic and spectral pK(a) values, it is concluded that the loss of catalytic activity at acidic pH results from the protonation of the hydroxide that bridges the binuclear metal center.  相似文献   

16.
Spectroscopic and crystallographic evidence of endogenous (His) ligation at the sixth coordination site of the heme iron has been reported for monomeric, dimeric, and tetrameric hemoglobins (Hbs) in both ferrous (hemochrome) and ferric (hemichrome) oxidation states. In particular, the ferric bis- histidyl adduct represents a common accessible ordered state for the β chains of all tetrameric Hbs isolated from Antarctic and sub-Antarctic fish. Indeed, the crystal structures of known tetrameric Hbs in the bis-His state are characterized by a different binding state of the α and β chains. An overall analysis of the bis-histidyl adduct of globin structures deposited in the Protein Data Bank reveals a marked difference between hemichromes in tetrameric Hbs compared to monomeric/dimeric Hbs. Herein, we review the structural, spectroscopic and stability features of hemichromes in tetrameric Antarctic fish Hbs. The role of bis-histidyl adducts is also addressed in a more evolutionary context alongside the concept of its potential physiological role.  相似文献   

17.
The effect of inositol hexakisphosphate (IHP) on the spectroscopic (EPR and absorbance) properties of the nitric oxide derivative of ferrous naturally glycated human hemoglobin HbA1c (HbA1cNO) has been investigated quantitatively. The results obtained show that 1) both in the absence and presence of IHP, the EPR and absorbance spectra of HbA1cNO show the same basic characteristics described for the nitrosyl derivative of ferrous HbA0, the nonglycated major component of human hemoglobin (HbA0NO); and 2) HbA1cNO binds IHP with an apparent dissociation equilibrium constant (upsilon = 1.8 x 10(-2) M), which is at least four orders of magnitude higher than that estimated for the polyphosphate interaction with HbA0NO (less than or equal to 3 x 10(-6) M). These data provide further independent evidence that interaction(s) of polyphosphates at the specific cleft between beta-chains along the dyad-axis is sterically hindered in HbA1c by the presence of the two glucose residues covalently bound to the N-termini of beta-chains, this finding being in agreement with the reduced effect of polyanions on HbA1c spectral and ligand-binding properties.  相似文献   

18.
Among heme-based sensors, recent phylogenomic and sequence analyses have identified 34 globin coupled sensors (GCS), to which an aerotactic or gene-regulating function has been tentatively ascribed. Here, the structural and biochemical characterization of the globin domain of the GCS from Geobacter sulfurreducens (GsGCS162) is reported. A combination of X-ray crystallography (crystal structure at 1.5 Å resolution), UV-vis and resonance Raman spectroscopy reveals the ferric GsGCS162 as an example of bis-histidyl hexa-coordinated GCS. In contrast to the known hexa-coordinated globins, the distal heme-coordination in ferric GsGCS162 is provided by a His residue unexpectedly located at the E11 topological site. Furthermore, UV-vis and resonance Raman spectroscopy indicated that ferrous deoxygenated GsGCS162 is a penta-/hexa-coordinated mixture, and the heme hexa-to-penta-coordination transition does not represent a rate-limiting step for carbonylation kinetics. Lastly, electron paramagnetic resonance indicates that ferrous nitrosylated GsGCS162 is a penta-coordinated species, where the proximal HisF8-Fe bond is severed.  相似文献   

19.
A spin label attached to a propionic acid group of the heme has been used to probe the heme environment of the alpha and beta chains of hemoglobin in both the subunit and tetrameric forms. The electron paramagnetic resonance (EPR) studies of hemoglobin hybrids in which the spin label is attached to either the alpha- or beta-heme (alpha2SLbeta 2 or alpha2beta2SL) and spin-labeled isolated chains (alphaSL and betaSL) show that: 1) alpha- and beta-hemes have different environments in the tetrameric forms of oxy-, deoxy-, and methemoglobins as well as in isolated single chains; 2) when isolated subunits associate to form hemoglobin tetramers, the environment of the alpha-heme changes more drastically than that of the beta-heme; 3) upon deoxygenation of hemoglobin, the structure in the vicinity of the alpha-heme changes more drastically than that of the beta-heme; and 4) upon the addition of organic phosphates to methemoglobin, the change in the spin state of the heme irons mainly arises from beta-heme. The results demonstrate conclusively that the alpha and the beta subunits of hemoglobin are structurally nonequivalent as are their structural changes as the result of ligation. The relationship of EPR spectrum and structure of hemoglobin is discussed.  相似文献   

20.
G S Lukat  K R Rodgers  H M Goff 《Biochemistry》1987,26(22):6927-6932
Electron paramagnetic resonance (EPR) studies of the nitrosyl adduct of ferrous lactoperoxidase (LPO) confirm that the fifth axial ligand in LPO is bound to the iron via a nitrogen atom. Complete reduction of the ferric LPO sample is required in order to observe the nine-line hyperfine splitting in the ferrous LPO/NO EPR spectrum. The ferrous LPO/NO complex does not exhibit a pH or buffer system dependence when examined by EPR. Interconversion of the ferrous LPO/NO complex and the ferric LPO/NO2- complex is achieved by addition of the appropriate oxidizing or reducing agent. Characterization of the low-spin LPO/NO2- complex by EPR and visible spectroscopy is reported. The pH dependence of the EPR spectra of ferric LPO and ferric LPO/CN- suggests that a high-spin anisotropic LPO complex is formed at high pH and an acid-alkaline transition of the protein conformation near the heme site does occur in LPO/CN-. The effect of tris(hydroxymethyl)aminomethane buffer on the LPO EPR spectrum is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号