首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutrophil elastase (NE) plays an important role in emphysema, a pulmonary disease associated with excessive elastolysis and ineffective repair of interstitial elastin. Besides its direct elastolytic activity, NE releases soluble epidermal growth factor receptor (EGFR) ligands and initiates EGFR/MEK/ERK signaling to downregulate tropoelastin mRNA in neonatal rat lung fibroblasts (DiCamillo SJ, Carreras I, Panchenko MV, Stone PJ, Nugent MA, Foster JA, and Panchenko MP. J Biol Chem 277: 18938-18946, 2002). We now report that NE downregulates tropoelastin mRNA in the rat fetal lung fibroblast line RFL-6. The tropoelastin mRNA downregulation is preceded by release of EGF-like and TGF-alpha-like polypeptides and requires EGFR/MEK/ERK signaling, because it is prevented by the EGFR inhibitor AG1478 and the MEK/ERK uncoupler U0126. Tropoelastin expression in RFL-6 fibroblasts is governed by autocrine TGF-beta signaling, because TGF-beta type I receptor kinase inhibitor or TGF-beta neutralizing antibody dramatically decreases tropoelastin mRNA and protein levels. Half-life of tropoelastin mRNA in RFL-6 cells is >24 h, but it is decreased to approximately 8 h by addition of TGF-beta neutralizing antibody, EGF, TGF-alpha, or NE. Tropoelastin mRNA destabilization by NE, EGF, or TGF-alpha is abolished by AG1478 or U0126. EGF-dependent tropoelastin mRNA downregulation is reversed upon ligand withdrawal, whereas chronic EGF treatment leads to persistent downregulation of tropoelastin mRNA and protein levels and decreases insoluble elastin deposition. We conclude that NE-initiated EGFR/MEK/ERK signaling cascade overrides the autocrine TGF-beta signaling on tropoelastin mRNA stability and, therefore, decreases the elastogenic response in RFL-6 fibroblasts. We hypothesize that persistent EGFR/MEK/ERK signaling could impede the TGF-beta-induced elastogenesis/elastin repair in the chronically inflamed, elastase/anti-elastase imbalanced lung in emphysema.  相似文献   

2.
ERalpha-negative breast tumors tend to overexpress growth factor receptors such as epidermal growth factor receptor or c-erbB-2. Raf-1 is a key intermediate in the signal transduction pathways of these receptors. High levels of constitutive Raf kinase (Deltaraf) activity imparts ERalpha- positive MCF-7 breast cancer cells with the ability to grow in the absence of estrogen. Deltaraf transfectants maintained in estrogen-depleted media showed greatly diminished responses to 17beta-estradiol or the pure antiestrogen ICI 182,780. Western blotting, ligand binding, and immunohistochemistry assays revealed a loss of ERalpha protein expression, and ribonuclease protection assays indicated that this correlated with loss of ERalpha message. In examining the basal expression of estrogen-induced genes in the stable transfectants or in transient cotransfection assays with an estrogen-response element- reporter construct and Deltaraf or constitutively active MAPK kinase (DeltaMEK), no ligand- independent activation of ERalpha was observed. Transient expression of Deltaraf and double-label immunostaining showed ERalpha was lost in those cells that transiently expressed Deltaraf. Abrogation of Raf signaling via treatment with the MEK inhibitors PD 098059 or U0126 resulted in reexpression of ERalpha. Similar studies performed with MCF-7 cells overexpressing epidermal growth factor receptor or c-erbB-2 confirmed that hyperactivation of MAPK resulted in down-regulation of ERalpha that was reversible by MEK inhibition or transfection with dominant negative ERK1 and ERK2 constructs. These data suggest that the hyperactivation of MAPK in epidermal growth factor receptor- or c-erbB-2-overexpressing breast cancer cells is directly responsible for generation of an ERalpha-negative phenotype and, more importantly, that this process may be abrogated by inhibiting these pathways, thus restoring ERalpha expression.  相似文献   

3.
Asthmatic airways are characterized by an increase in smooth muscle mass, due mainly to hyperplasia. Many studies suggest that extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2, respectively), one group of the mitogen-activated protein (MAP) kinase superfamily, play a key role in the signal transduction pathway leading to cell proliferation. PGE(2) and forskolin inhibited mitogen-induced ERK activation. Inhibition of MAP kinase kinases 1 and 2 (MEK1 and MEK2, respectively), which are upstream from ERK, with the specific MEK inhibitor U-0126 blocked both cell proliferation and ERK activation. In addition, U-0126 inhibited mitogen-induced activation of p90 ribosomal S6 kinase and expression of c-Fos and cyclin D1, all of which are downstream from ERK in the signaling cascade that leads to cell proliferation. Antisense oligodeoxynucleotides directed to ERK1 and -2 mRNAs reduced ERK protein and cell proliferation. These results indicate that ERK is required for human airway smooth muscle cell proliferation. Thus targeting the control of ERK activation may provide a new therapeutic approach for hyperplasia seen in asthma.  相似文献   

4.
The MEK1-ERK1/2 signaling pathway has been implicated in the regulation of renal epithelial cell proliferation, epithelial-to-mesenchymal transition and the induction of an invasive cell phenotype. Much less information is available about the MEK5-ERK5 module and its role in renal epithelial cell proliferation and differentiation. In the present study we have investigated the regulation of these two families of extracellular signal-regulated kinases in epidermal growth factor (EGF)-stimulated human kidney-2 (HK-2) cells and a possible interaction between ERK1/2 and ERK5. Here we report that 5 ng/ml EGF led to a strong stimulation of HK-2 cell proliferation, which was largely U0126-sensitive. Both synthetic MEK1/2 inhibitors U0126 and Cl-1040, when used at 10 and 1 microM, respectively, inhibited basal and EGF-induced ERK1/2 phosphorylation but not ERK5 phosphorylation. Long-term inhibition of MEK1/2-ERK1/2 signaling and/or vanadate-sensitive protein phosphatases enhanced and prolonged EGF-induced ERK5 phosphorylation, while transient expression of an adenoviral constitutively active MEK1 (Ad-caMEK1) construct completely blocked EGF-induced ERK5 phosphorylation. Expression of Ad-caMEK1 in HK-2 cells resulted in the upregulation of the dual-specificity phosphatases MKP-3/DUSP6, MKP-1/DUSP1, and DUSP5. The EGF-mediated time-dependent induction of MKP-3, MKP-1 and DUSP5 mRNA levels was U0126-sensitive at a concentration, which blocked EGF-mediated ERK1/2 phosphorylation but not ERK5 phosphorylation. Furthermore, U0126 inhibited EGF-induced MKP-3 and MKP-1 protein expression. Both MKP-3 and MKP-1 co-immunoprecipitated with ERK5 in unstimulated as well as in EGF-stimulated HK-2 cells. These results suggest the existence of an ERK1/2-driven negative feed-back regulation of ERK5 signaling in EGF-stimulated HK-2 cells, which is mediated by MKP-3, DUSP5 and/or MKP-1.  相似文献   

5.
Cyclooxygenase-2 (COX-2) has been linked to neoplastic progression in Barrett's esophagus. Acid exposure has been shown both to activate the MAPK pathways and to increase COX-2 protein expression in Barrett's metaplasia, but it is not known whether these effects are interrelated. We hypothesized that acid-induced activation of the MAPK pathways mediates an increase in COX-2 expression in Barrett's esophagus, and we tested this hypothesis in a Barrett's-associated adenocarcinoma cell line (SEG-1). We exposed SEG-1 cells to acidic or neutral media in the presence and absence of two MAPK inhibitors: U-0126 (an ERK inhibitor) or SB-203580 (a p38 inhibitor). We quantitated COX-2 protein levels using an enzyme immunometric assay and COX-2 mRNA levels using real-time PCR. We also determined how acid affects the activity of the COX-2 promoter and mRNA stability. Compared with SEG-1 cells exposed to neutral media, acid-exposed cells exhibited a 2.8-fold increase in COX-2 mRNA levels within 30 min. Both U-0126 and SB-203580 attenuated the acid-induced increase in COX-2 mRNA. Acid significantly increased COX-2 protein expression and promoter activity, and both of these effects were abolished by treatment with U-0126 and SB-203580. Acid exposure also stabilized COX-2 mRNA levels, an effect that was abolished by U-0126 but not by SB-203580. We conclude that acid increases COX-2 expression through activation of the MAPK pathways. Acid-induced activation of both ERK and p38 causes a significant increase in COX-2 promoter activity, and acid-activated ERK stabilizes COX-2 mRNA. These findings suggest potential mechanisms whereby acid reflux might promote carcinogenesis in Barrett's esophagus.  相似文献   

6.
7.
We demonstrate that exposure of post-confluent 3T3-L1 preadipocytes to insulin, isobutylmethylxanthine (MIX), dexamethasone (DEX), and fetal bovine serum induces a rapid but transient activation of MEK1 as indicated by extensive phosphorylation of ERK1 and ERK2 during the initial 2 h of adipogenesis. Inhibition of this activity by treating the cells with a MEK1-specific inhibitor (U0126 or PD98059) prior to the induction of differentiation significantly attenuated the expression of peroxisome proliferator-activated receptor (PPAR) gamma, CCAAT/enhancer-binding protein (C/EBP) alpha, perilipin, and adipocyte-specific fatty acid-binding protein (aP2). Treating the preadipocytes with troglitazone, a potent PPARgamma ligand, could circumvent the inhibition of adipogenic gene expression by U0126. Fibroblast growth factor-2 (FGF-2), in the presence of dexamethasone, isobutylmethylxanthine, and insulin, induces a prolonged activation of the MEK/ERK signaling pathway, which lasts for at least 12 h post-induction, and this activity is less sensitive to the MEK inhibitors. Consequently, preadipocytes treated with U0126 in the presence of fibroblast growth factor-2 (FGF-2) express normal post-induction levels of MEK activity, and, in so doing, are capable of undergoing adipogenesis. We further show that activation of MEK1 significantly enhances the transactivation of the C/EBPalpha minimal promoter during the early phase of the differentiation process. Our results suggest that activation of the MEK/ERK signaling pathway during the initial 12 h of adipogenesis enhances the activity of factors that regulate both C/EBPalpha and PPARgamma expression.  相似文献   

8.
Fibroblast growth factor (FGF) induces the notochord and mesenchyme in ascidian embryos, via extracellular signal-regulated kinase (ERK) that belongs to the mitogen-activated protein kinase (MAPK) family. A cDNA microarray analysis was carried out to identify genes affected by an inhibitor of MAPK/ERK kinase (MEK), U0126, in embryos of the ascidian Ciona intestinalis. Data obtained from the microarray and in situ hybridization suggest that the majority of genes are downregulated by U0126 treatment. Genes that were downregulated in U0126-treated embryos included Ci-Bra and Ci-Twist-like1 that are master regulatory genes of notochord and mesenchyme differentiation, respectively. The plasminogen mRNA was downregulated by U0126 in presumptive endoderm cells. This suggests that a MEK-mediated extracellular signal is necessary for gene expression in tissues whose specification does not depend on cell-to-cell interaction. Among 85 cDNA clusters that were not affected by U0126, 30 showed mitochondria-like mRNA localization in the nerve cord/muscle lineage blastomeres in the equatorial region. The expression level and asymmetric distribution of these mRNA were independent of MEK signaling.  相似文献   

9.
10.
The roles of the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinases-1 and -2 (ERK-1/2) in fetal lung development have not been extensively characterized. To determine if ERK-1/2 signaling plays a role in fetal lung branching morphogenesis, U-0126, an inhibitor of the upstream kinase MAP ERK kinase (MEK), was added to fetal lung explants in vitro. Morphometry as measured by branching, area, perimeter, and complexity were significantly reduced in U-0126-treated lungs. At the same time, U-0126 treatment reduced ERK-1/2, slightly increased p38 kinase, but did not change c-Jun NH(2)-terminal kinase activities, indicating that U-0126 specifically inhibited the ERK-1/2 enzymes. These changes were associated with increased apoptosis as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and immunofluorescent labeling of anti-active caspase-3 in the mesenchyme of explants after U-0126 treatment compared with the control. Mitosis characterized by immunolocalization of proliferating cell nuclear antigen was found predominantly in the epithelium and was reduced in U-0126-treated explants. Thus U-0126 causes specific inhibition of ERK-1/2 signaling, diminished branching morphogenesis, characterized by increased mesenchymal apoptosis, and decreased epithelial proliferation in fetal lung explants.  相似文献   

11.
Dietary conjugated linoleic acid (CLA) reduces body fat in animals and some humans. Here we show that trans-10, cis-12 CLA, but not cis-9, trans-11 CLA, when added to cultures of stromal vascular cells containing newly differentiated human adipocytes, caused a time-dependent decrease in triglyceride content, insulin-stimulated glucose and fatty acid uptake, incorporation into lipid, and oxidation compared with controls. In parallel, gene expression of peroxisome proliferator-activated receptor-gamma and many of its downstream targets were diminished by trans-10, cis-12 CLA, whereas leptin gene expression was increased. Prior to changes in gene expression and metabolism, trans-10, cis-12 CLA caused a robust and sustained activation of mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK) signaling. Furthermore, the trans-10, cis-12 CLA-mediated activation of MEK/ERK could be attenuated by pretreatment with U0126 and pertussis toxin. In parallel, pretreatment with U0126 blocked the ability of trans-10, cis-12 CLA to alter gene expression and attenuate glucose and fatty acid uptake of the cultures. Intriguingly, the induction by CLA of MEK/ERK signaling was linked to hypersecretion of adipocytokines interleukin-6 and interleukin-8. Collectively, these data demonstrate for the first time that trans-10, cis-12 CLA decreases the triglyceride content of newly differentiated human adipocytes by inducing MEK/ERK signaling through the autocrine/paracrine actions of interleukins-6 and 8.  相似文献   

12.
13.
Upregulated ERK1/2 activity is correlated with androgen receptor (AR) downregulation in certain prostate cancer (PCa) that exhibits androgen deprivation-induced neuroendocrine differentiation, but its functional relevance requires elucidation. We found that sustained ERK1/2 activation using active Raf or MEK1/2 mutants is sufficient to induce AR downregulation at mRNA and protein levels in LNCaP. Downregulation of AR protein, but not mRNA, was blocked by proteasome inhibitors, MG132 and bortezomib, indicating that the pathway regulation is mediated at multiple points. Ectopic expression of a constitutively active AR inhibited Raf/MEK/ERK-mediated regulation of the differentiation markers, neuron-specific enolase and neutral endopeptidase, and the cyclin-dependent kinase inhibitors, p16INK4A and p21CIP1, but not Rb phosphorylation and E2F1 expression, indicating that AR has a specific role in the pathway-mediated differentiation and growth inhibitory signaling. However, despite the sufficient role of Raf/MEK/ERK, its inhibition using U0126 or ERK1/2 knockdown could not block androgen deprivation-induced AR downregulation in an LNCaP neuroendocrine differentiation model, suggesting that additional signaling pathways are involved in the regulation. We additionally report that sustained Raf/MEK/ERK activity can downregulate full length as well as hormone binding domain-deficient AR isoforms in androgen-refractory C4-2 and CWR22Rv1, but not in LAPC4 and MDA-PCa-2b. Our study demonstrates a novel role of the Raf/MEK/ERK pathway in regulating AR expression in certain PCa types and provides an insight into PCa responses to its aberrant activation.  相似文献   

14.
15.
It has been reported that inhibition of extracellular signal-regulated protein kinases (ERKs) attenuates the toxicity cisplatin (cis-platinum (II)-diammine dichloride) in some cell types. This response was here investigated using human myeloid leukemia cells. Cisplatin stimulated ERK1/2 phosphorylation and caused apoptosis in U-937 promonocytic cells, an effect which was attenuated by the MEK/ERK inhibitors PD98059 and U0126. While ERK1/2 activation was a general phenomenon, irrespective of the used cell type or antitumour drug, the MEK/ERK inhibitors only reduced cisplatin toxicity in human myeloid cells (THP-1, HL-60 and NB-4), but not in RAW 264.7 mouse macrophages and NRK-52E rat renal tubular cells; and failed to reduce the toxicity etoposide, camptothecin, melphalan and arsenic trioxide, in U-937 cells. U0126 attenuated cisplatin-DNA binding and intracellular peroxide accumulation, which are important regulators of cisplatin toxicity. Although cisplatin decreased the intracellular glutathione (GSH) content, which was restored by U0126, treatments with GSH-ethyl ester and dl-buthionine-(S,R)-sulfoximine revealed that GSH does not regulate cisplatin toxicity in the present experimental conditions. In spite of it, PD98059 and U0126 reduced the intracellular accumulation of cisplatin. These results suggest that GSH-independent modulation of drug transport is a major mechanism explaining the anti-apoptotic action of MEK/ERK inhibitors in cisplatin-treated myeloid cells.  相似文献   

16.
17.
Inhibition of osteoblast-mediated mineralization is one of the major catabolic effects of parathyroid hormone (PTH) on bone. Previously, we showed that PTH induces matrix gamma-carboxyglutamic acid (Gla) protein (MGP) expression and established that this induction is critical for PTH-mediated inhibition of osteoblast mineralization. In the present study, we focus on the mechanism through which PTH regulates MGP expression in osteoblastic MC3T3-E1 cells. Following transient transfection of these cells with a -748 bp murine MGP promoter-luciferase construct (pMGP-luc), PTH (10 (-7) M) induced promoter activity in a time-dependent manner with a maximal four- to six fold induction seen 6 h after PTH treatment. Both H-89 (PKA inhibitor) and U0126 (MEK inhibitor), suppressed PTH induction of MGP promoter activity as well as the MGP mRNA level. In addition, forskolin (PKA activator) stimulated MGP promoter activity and mRNA levels confirming that PKA is one of the signaling molecules required for regulation of MGP by PTH. Co-transfection of MC3T3-E1 cells with pMGP-luc and MEK(SP), a plasmid encoding the constitutively active form of MEK, led to a dose-dependent increase in MGP promoter activity. Both MGP promoter activity and MGP mRNA level were not affected by the protein kinase C (PKC) inhibitor, GF109203X. However, phorbol 12-myristate 13-acetate (PMA), a selective PKC activator induced MGP mRNA expression through activation of extracellular signal-regulated kinase (ERK). Taken together, these results indicate that PTH regulates MGP via both PKA- and ERK-dependent pathways.  相似文献   

18.
摘要 目的:分析富含半胱氨酸的酸性分泌蛋白类似蛋白1(SPARCL1)对非小细胞肺癌(NSCLC)细胞增殖、凋亡、侵袭的影响,并探讨分裂原活化抑制剂(MEK)/细胞外调节蛋白激酶(ERK)通路在其中发挥的作用。方法:收集2019年9月~2021年6月期间本院接受手术治疗的84例NSCLC患者癌组织与相应癌旁组织,实时定量逆转录聚合酶链反应(qRT-PCR)法测定并比较各组织以及正常肺上皮细胞HBEpiC、NSCLC细胞A549、HCC827、H1299、H292中SPARCL1 信使RNA(mRNA)表达水平,选取A549、HCC827培养并分组,分为对照组、NC siRNA组、SPARCL1 siRNA组、U0126组(MEK/ERK特异性抑制剂)、SPARCL1 siRNA加U0126组,细胞计数法(CCK8)以及平板克隆法测定A549、HCC827细胞增殖,流式细胞仪测定A549、HCC827细胞凋亡,Transwell小室法测定A549、HCC827细胞侵袭能力,蛋白质印迹法(western blot)检测SPARCL1、p-MEK、MEK、p-ERK1/2、ERK1/2蛋白表达。结果:SPARCL1在NSCLC组织中mRNA表达水平低于癌旁组织(P<0.05);与HBEpiC细胞相比,NSCLC细胞A549、HCC827、H1299、H292细胞中SPARCL1 mRNA表达水平降低(P<0.05);与对照组相比,SPARCL1 siRNA组A549、HCC827细胞SPARCL1 mRNA表达水平与蛋白表达、凋亡率降低(P<0.05),OD450、克隆形成数、侵袭细胞数、p-MEK/MEK、p-ERK1/2/ERK1/2蛋白表达升高(P<0.05),U0126组A549、HCC827细胞SPARCL1 mRNA表达水平与蛋白表达、凋亡率升高(P<0.05),OD450、克隆形成数、侵袭细胞数、p-MEK/MEK、p-ERK1/2/ERK1/2蛋白表达降低(P<0.05);与SPARCL1 siRNA组相比,SPARCL1 siRNA加U0126组A549、HCC827细胞SPARCL1 mRNA表达水平与蛋白表达、凋亡率升高(P<0.05),OD450、克隆形成数、侵袭细胞数、p-MEK/MEK、p-ERK1/2/ERK1/2蛋白表达降低(P<0.05)。结论:SPARCL1可能通过调控MEK/ERK通路影响NSCLC A549、HCC827细胞增殖、侵袭与凋亡。  相似文献   

19.
Non-steroidal anti-inflammatory drugs (NSAIDs) are known to inhibit prostaglandin synthetic enzyme, cyclooxygenases (COXs), as well as to exhibit anti-tumor activity although at much higher concentrations. 15-Hydroxyprostaglandin dehyrogenase (15-PGDH), a key prostaglandin catabolic enzyme, was recently shown to be a tumor suppressor. Effects of NSAIDs on 15-PGDH expression were therefore examined. Flurbiprofen and several other NSAIDs were found to induce 15-PGDH expression in human colon cancer HT29 cells. Flurbiprofen, the most active one, was also shown to induce 15-PGDH expression in other types of cancer cells. Induction of 15-PGDH expression appeared to occur at the stage of mRNA as levels of 15-PGDH mRNA were increased by flurbiprofen in HT29 cells. Levels of 15-PGDH were also found to be regulated at the stage of protein turnover. MEK inhibitors, PD98059 and U-0126, which inhibited ERK phosphorylation were shown to elevate 15-PGDH levels very significantly. These inhibitors did not appear to alter 15-PGDH mRNA levels but down-regulate matrix metalloproteinase-9 (MMP-9). This protease was shown to degrade and inactivate 15-PGDH suggesting that elevation of 15-PGDH levels could be due to inhibition of MMP-9 expression by these inhibitors. Similarly, flurbiprofen was also demonstrated to inhibit ERK activation and to down-regulate MMP-9 expression. Furthermore, flurbiprofen was shown to induce the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), an inhibitor of MMP-9. The turnover of 15-PGDH was found to prolong in the presence of flurbiprofen as compared to that in the absence of this drug. Taken together, these results indicate that flurbiprofen up-regulates 15-PGDH by increasing the expression and decreasing the degradation of 15-PGDH in HT29 cells.  相似文献   

20.
Indian hedgehog (Ihh) is produced by growth plate pre-hypertrophic chondrocytes, and is an important regulator of endochondral ossification. However, little is known about the regulation of Ihh in chondrocytes. We have examined the role of integrins and mitogen-activated protein (MAP) kinases in Ihh mRNA regulation in CFK-2 chondrocytic cells. Cells incubated with the beta1-integrin blocking antibody had decreased Ihh mRNA levels, which was accompanied by decreases of activated extracellular signal-regulated kinases (ERK1/2) and activated p38 MAPK. Ihh mRNA levels were also inhibited by U0126, a specific MEK1/2 inhibitor, or SB203580, a specific p38 MAPK inhibitor. Cells transfected with constitutively active MEK1 or MKK3 had increased Ihh mRNA levels, which were diminished by dominant-negative MEK1, p38alpha or p38beta. Stimulation of the PTH1R with 10(-8) M rPTH (1-34) resulted in dephosphorylation of ERK1/2 that was evident within 15 min and sustained for 1 h, as well as transient dephosphorylation of p38 MAPK that was maximal after 25 min. PTH stimulation decreased Ihh mRNA levels, and this effect was blocked by transfecting the cells with constitutively active MEK1 but not by MKK3. These studies demonstrated that activation of ERK1/2 or p38 MAPK increased Ihh mRNA levels. Stimulation of the PTH1R or blocking of beta1-integrin resulted in inhibition of ERK1/2 and p38 MAPK and decreased levels of Ihh mRNA. Our data demonstrate the central role of MAPK in the regulation of Ihh in CFK-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号