首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa catalyzes an intramolecular phosphoryl transfer across its phosphosugar substrates, which are precursors in the synthesis of exoproducts involved in bacterial virulence. Previous structural studies of PMM/PGM have established a key role for conformational change in its multistep reaction, which requires a dramatic 180° reorientation of the intermediate within the active site. Here hydrogen-deuterium exchange by mass spectrometry and small angle x-ray scattering were used to probe the conformational flexibility of different forms of PMM/PGM in solution, including its active, phosphorylated state and the unphosphorylated state that occurs transiently during the catalytic cycle. In addition, the effects of ligand binding were assessed through use of a substrate analog. We found that both phosphorylation and binding of ligand produce significant effects on deuterium incorporation. Phosphorylation of the conserved catalytic serine has broad effects on residues in multiple domains and is supported by small angle x-ray scattering data showing that the unphosphorylated enzyme is less compact in solution. The effects of ligand binding are generally manifested near the active site cleft and at a domain interface that is a site of conformational change. These results suggest that dephosphorylation of the enzyme may play two critical functional roles: a direct role in the chemical step of phosphoryl transfer and secondly through propagation of structural flexibility. We propose a model whereby increased enzyme flexibility facilitates the reorientation of the reaction intermediate, coupling changes in structural dynamics with the unique catalytic mechanism of this enzyme.  相似文献   

2.
A novel chymotrypsin which is expressed in the midgut of the lepidopteran insect Spodoptera exigua is described. This enzyme, referred to as SeCT34, represents a novel class of chymotrypsins. Its amino-acid sequence shares common features of gut chymotrpysins, but can be clearly distinguished from other serine proteinases that are expressed in the insect gut. Most notable, SeCT34 contains a chymotrypsin activation site and the highly conserved motive DSGGP in the catalytic domain around the active-site serine is changed to DSGSA. Recombinant expression of SeCT34 was achieved in Sf21 insect cells using a special baculovirus vector, which has been engineered for optimized protein production. This is the first example of recombinant expression of an active serine proteinase which functions in the lepidopteran digestive tract. Purified recombinant SeCT34 enzyme was characterized by its ability to hydrolyze various synthetic substrates and its susceptibility to proteinase inhibitors. It appeared to be highly selective for substrates carrying a phenylalanine residue at the cleavage site. SeCT34 showed a pH-dependence and sensitivity to inhibitors, which is characteristic for semi-purified lepidopteran gut proteinases. Expression analysis revealed that SeCT34 was only expressed in the midgut of larvae at the end of their last instar, just before the onset of pupation. This suggests a possible role of this protein in the proteolytic remodelling that occurs in the gut during the larval to pupal molt.  相似文献   

3.
Crystal structures of human and rabbit cytosolic serine hydroxymethyltransferase have shown that Tyr65 is likely to be a key residue in the mechanism of the enzyme. In the ternary complex of Escherichia coli serine hydroxymethyltransferase with glycine and 5-formyltetrahydrofolate, the hydroxyl of Tyr65 is one of four enzyme side chains within hydrogen-bonding distance of the carboxylate group of the substrate glycine. To probe the role of Tyr65 it was changed by site-directed mutagenesis to Phe65. The three-dimensional structure of the Y65F site mutant was determined and shown to be isomorphous with the wild-type enzyme except for the missing Tyr hydroxyl group. The kinetic properties of this mutant enzyme in catalyzing reactions with serine, glycine, allothreonine, D- and L-alanine, and 5,10-methenyltetrahydrofolate substrates were determined. The properties of the enzyme with D- and L-alanine, glycine in the absence of tetrahydrofolate, and 5, 10-methenyltetrahydrofolate were not significantly changed. However, catalytic activity was greatly decreased for serine and allothreonine cleavage and for the solvent alpha-proton exchange of glycine in the presence of tetrahydrofolate. The decreased catalytic activity for these reactions could be explained by a greater than 2 orders of magnitude increase in affinity of Y65F mutant serine hydroxymethyltransferase for these amino acids bound as the external aldimine. These data are consistent with a role for the Tyr65 hydroxyl group in the conversion of a closed active site to an open structure.  相似文献   

4.
Equilibrium binding studies demonstrate that purified Escherichia coli isocitrate dehydrogenase binds isocitrate, alpha-ketoglutarate, NADP, and NADPH at 1:1 ratios of substrate to enzyme monomer. The phosphorylated enzyme, which is completely inactive, is unable to bind isocitrate but retains the ability to bind NADP and NADPH. Replacement of serine 113, which is the site of phosphorylation, by aspartate results in an inactive enzyme that is unable to bind isocitrate. Replacement of the same serine with other amino acids (lysine, threonine, cysteine, tyrosine, and alanine) produces active enzymes that bind both substrates. Hence, the negative charge of an aspartate or a phosphorylated serine at site 113 inactivates the enzyme by preventing the binding of isocitrate.  相似文献   

5.
Penicillin-binding protein 2a (PBP2a) of Staphylococcus aureus is refractory to inhibition by available beta-lactam antibiotics, resulting in resistance to these antibiotics. The strains of S. aureus that have acquired the mecA gene for PBP2a are designated as methicillin-resistant S. aureus (MRSA). The mecA gene was cloned and expressed in Escherichia coli, and PBP2a was purified to homogeneity. The kinetic parameters for interactions of several beta-lactam antibiotics (penicillins, cephalosporins, and a carbapenem) and PBP2a were evaluated. The enzyme manifests resistance to covalent modification by beta-lactam antibiotics at the active site serine residue in two ways. First, the microscopic rate constant for acylation (k2) is attenuated by 3 to 4 orders of magnitude over the corresponding determinations for penicillin-sensitive penicillin-binding proteins. Second, the enzyme shows elevated dissociation constants (Kd) for the non-covalent pre-acylation complexes with the antibiotics, the formation of which ultimately would lead to enzyme acylation. The two factors working in concert effectively prevent enzyme acylation by the antibiotics in vivo, giving rise to drug resistance. Given the opportunity to form the acyl enzyme species in in vitro experiments, circular dichroism measurements revealed that the enzyme undergoes substantial conformational changes in the course of the process that would lead to enzyme acylation. The observed conformational changes are likely to be a hallmark for how this enzyme carries out its catalytic function in cross-linking the bacterial cell wall.  相似文献   

6.
Serine hydroxymethyltransferase has a conserved histidine residue (His-228) next to the lysine residue (Lys-229) which forms the internal aldimine with pyridoxal 5'-phosphate. This histidine residue is also conserved at the equivalent position in all amino acid decarboxylases and tryptophan synthase. Two mutant forms of Escherichia coli serine hydroxymethyltransferase, H228N and H228D, were constructed, expressed, and purified. The properties of the wild type and mutant enzymes were studied with substrates and substrate analogs by differential scanning calorimetry, circular dichroism, steady state kinetics, and rapid reaction kinetics. The conclusions of these studies were that His-228 plays an important role in the binding and reactivity of the hydroxymethyl group of serine in the one-carbon-binding site. The mutant enzymes utilize substrates and substrate analogs more effectively for a variety of alternate non-physiological reactions compared to the wild type enzyme. As one example, the mutant enzymes cleave L-serine to glycine and formaldehyde when tetrahydropyteroylglutamate is replaced by 5-formyltetrahydropteroylglutamate. The released formaldehyde inactivates these mutant enzymes. The loss of integrity of the one-carbon-binding site with L-serine in the two mutant forms of the enzyme may be the result of these enzymes not undergoing a conformational change to a closed form of the active site when serine forms the external aldimine complex.  相似文献   

7.
Nucleoside diphosphate kinases (NDK) are characterized by high catalytic turnover rates and diverse substrate specificity. These features make this enzyme an effective activator of a pro-drug-an application that has been actively pursued for a variety of therapeutic strategies. The catalytic mechanism of this enzyme is governed by a conserved histidine that coordinates a magnesium ion at the active site. Despite substantial structural and biochemical information on NDK, the mechanistic feature of the phospho-transfer that leads to auto-phosphorylation remains unclear. While the role of the histidine residue is well documented, the other active site residues, in particular the conserved serine remains poorly characterized. Studies on some homologues suggest no role for the serine residue at the active site, while others suggest a crucial role for this serine in the regulation and quaternary association of this enzyme in some species. Here we report the biochemical features of the Staphylococcus aureus NDK and the mutant enzymes. We also describe the crystal structures of the apo-NDK, as a transition state mimic with vanadate and in complex with different nucleotide substrates. These structures formed the basis for molecular dynamics simulations to understand the broad substrate specificity of this enzyme and the role of active site residues in the phospho-transfer mechanism and oligomerization. Put together, these data suggest that concerted changes in the conformation of specific residues facilitate the stabilization of nucleotide complexes thereby enabling the steps involved in the ping-pong reaction mechanism without large changes to the overall structure of this enzyme.  相似文献   

8.
The first clearly established example of Ser/Thr/Tyr phosphorylation of a bacterial protein was isocitrate dehydrogenase. In 1979, 25 years after the discovery of protein phosphorylation in eukaryotes, this enzyme was reported to become phosphorylated on a serine residue. In subsequent years, numerous other bacterial proteins phosphorylated on Ser, Thr or Tyr were discovered and the corresponding protein kinases and P-protein phosphatases were identified. These protein modifications regulate all kinds of physiological processes. Ser/Thr/Tyr phosphorylation in bacteria therefore seems to play a similar important role as in eukaryotes. Surprisingly, many bacterial protein kinases do not exhibit any similarity to eukaryotic protein kinases, but rather resemble nucleotide-binding proteins or kinases phosphorylating diverse low-molecular-weight substrates.  相似文献   

9.
Few structures of viral serine proteases, those encoded by the Sindbis and Semliki Forest viruses, hepatitis C virus (HCV) and cytomegalovirus, have been reported. In the life cycle of HCV a crucial role is played by a chymotrypsin-like serine protease encoded at the N-terminus of the viral NS3 protein, the solution structure of which we present here complexed with a covalently bound reversible inhibitor. Unexpectedly, the residue in the P2 position of the inhibitor induces an effective stabilization of the catalytic His-Asp hydrogen bond, by shielding that region of the protease from the solvent. This interaction appears crucial in the activation of the enzyme catalytic machinery and represents an unprecedented observation for this family of enzymes. Our data suggest that natural substrates of this serine protease could contribute to the enzyme activation by a similar induced-fit mechanism. The high degree of similarity at the His-Asp catalytic site region between HCV NS3 and other viral serine proteases suggests that this behaviour could be a more general feature for this category of viral enzymes.  相似文献   

10.
The three-dimensional structure of duodenase, a serine protease from bovine duodenum mucosa, has been determined at 2.4A resolution. The enzyme, which has both trypsin-like and chymotrypsin-like activities, most closely resembles human cathepsin G with which it shares 57% sequence identity and similar specificity. The catalytic Ser195 in duodenase adopts the energetically favored conformation typical of serine proteinases and unlike the strained state typical of lipase/esterases. Of several waters in the active site of duodenase, the one associated with Ser214 is found in all serine proteinases and most lipase/esterases. The conservation of the Ser214 residue in serine proteinase, its presence in the active site, and participation in a hydrogen water network involving the catalytic triad (His57, Asp107, and Ser195) argues for its having an important role in the mechanism of action. It may be referred to as a fourth member of the catalytic triad. Duodenase is one of a growing family of enzymes that possesses trypsin-like and chymotrypsin-like activity. Not long ago, these activities were considered to be mutually exclusive. Computer modeling reveals that the S1 subsite of duodenase has structural features compatible with effective accommodation of P1 residues typical of trypsin (Arg/Lys) and chymotrypsin (Tyr/Phe) substrates. The determination of structural features associated with functional variation in the enzyme family may permit design of enzymes with a specific ratio of trypsin and chymotrypsin activities.  相似文献   

11.
After purification from the crude commercial preparation, the 3D structure of the synthetically valuable lipase from Pseudomonas stutzeri (LipC) is described through homology modelling, leading to a rational explanation of its catalytic behaviour. This elucidates that the enzyme has an active site defined by residues Ser-109, His-277 and Asp-255, and an oxyanion hole formed by peptidic NH groups from Met-43 and His-110. Interestingly, the active site is covered by two lids, one of them (Lid1, residues 145–181) being larger than the other (Lid2, residues 233–253). The opening and closing of these lids have been simulated by molecular modelling assuming both water and pure THF as solvents. Accordingly, THF clearly helps the exposure of the catalytic serine to the reaction medium which explains its excellent reported performance in this organic solvent. On the other hand, the stereospecificity of this enzyme is explained considering a small hydrophobic cavity formed by Gly-45, Phe-46, Tyr-54, Trp-55, Leu-278, Val-281 and Phe-284; particularly, Tyr-54 plays an important role in substrate recognition. In fact, in benzoin acylation, this residue forces the benzoyl group of the substrate to go into that cavity via H bonding with the carbonyl O atom of benzoin, thereby explaining the observed S-preference in benzoin acylation, which apparently contradicts the canonical Kazlauskas’ rule. For other alcohols non possessing the α-hydroxycarbonyl core, Tyr-54 is allowing the entrance into the above-mentioned hydrophobic cavity only to those substrates with no steric hindrance in the vicinity of the hydroxymethane moiety.  相似文献   

12.
Frase H  Lee I 《Biochemistry》2007,46(22):6647-6657
Lon is a homo-oligomeric ATP-dependent serine protease that functions in the degradation of damaged and certain regulatory proteins. This enzyme has emerged as a novel target in the development of antibiotics because of its importance in conferring bacterial virulence. In this study, we explored the mechanism by which the proteasome inhibitor MG262, a peptidyl boronate, inhibits the peptide hydrolysis activity of Salmonella enterica serovar Typhimurium Lon. In addition, we synthesized a fluorescent peptidyl boronate inhibitor based upon the amino acid sequence of a product of peptide hydrolysis by the enzyme. Using steady-state kinetic techniques, we have shown that two peptidyl boronate variants are competitive inhibitors of the peptide hydrolysis activity of Lon and follow the same two-step, time-dependent inhibition mechanism. The first step is rapid and involves binding of the inhibitor and formation of a covalent adduct with the active site serine. This is followed by a second slow step in which Lon undergoes a conformational change or isomerization to increase the interaction of the inhibitor with the proteolytic active site to yield an overall inhibition constant of 5-20 nM. Although inhibition of serine and threonine proteases by peptidyl boronates has been detected previously, Lon is the first protease that has required the binding of ATP in order to observe inhibition.  相似文献   

13.
We are probing the determinants of catalytic function and substrate specificity in serine proteases by kinetic and crystallographic characterization of genetically engineered site-directed mutants of rat trypsin. The role of the aspartyl residue at position 102, common to all members of the serine protease family, has been tested by substitution with asparagine. In the native enzyme, Asp102 accepts a hydrogen bond from the catalytic base His57, which facilitates the transfer of a proton from the enzyme nucleophile Ser195 to the substrate leaving group. At neutral pH, the mutant is four orders of magnitude less active than the naturally occurring enzyme, but its binding affinity for model substrates is virtually undiminished. Crystallographic analysis reveals that Asn102 donates a hydrogen bond to His57, forcing it to act as donor to Ser195. Below pH 6, His57 becomes statistically disordered. Presumably, the di-protonated population of histidyl side chains are unable to hydrogen bond to Asn102. Steric conflict may cause His57 to rotate away from the catalytic site. These results suggest that Asp102 not only provides inductive and orientation effects, but also stabilizes the productive tautomer of His57. Three experiments were carried out to alter the substrate specificity of trypsin. Glycine residues at positions 216 and 226 in the substrate-binding cavity were replaced by alanine residues in order to differentially affect lysine and arginine substrate binding. While the rate of catalysis by the mutant enzymes was reduced in the mutant enzymes, their substrate specificity was enhanced relative to trypsin. The increased specificity was caused by differential effects on the catalytic activity towards arginine and lysine substrates. The Gly----Ala substitution at 226 resulted in an altered conformation of the enzyme which is converted to an active trypsin-like conformation upon binding of a substrate analog. In a third experiment, Lys189, at the bottom of the specificity pocket, was replaced with an aspartate with the expectation that specificity of the enzyme might shift to aspartate. The mutant enzyme is not capable of cleaving at Arg and Lys or Asp, but shows an enhanced chymotrypsin-like specificity. Structural investigations of these mutants are in progress.  相似文献   

14.
Protein phosphorylation plays a major role in bacterial cellular regulation as in eukaryotes. The HPr Kinase/Phosphorylase (HprK/P) was the first bacterial serine protein kinase to have had its structure determined, establishing that it is unrelated to the eukaryotic kinases. HprK/P belongs to another large structural family, the P-loop containing proteins. Among them, P-loop containing kinases have been assumed to only phosphorylate small molecules, but the example of HprK/P suggests that some may have proteins as substrates, defining novel cellular signal transduction pathways. Another major result of the studies presented here is that HprK/P also catalyses the phosphorolysis of the phosphoserine, yielding serine and pyrophosphate. The two different catalytic activities are carried out at the same active site. The determination of the structure of the complex with the protein substrates HPr and PserHPr allowed us to propose a catalytic mechanism. Since regulation of HPr phosphorylation has been shown to be involved in the virulence process of pathogenic bacteria, a search for specific inhibitors of HprK/P is of clinical interest and the first hit has already been found.  相似文献   

15.
《FEBS letters》2014,588(9):1616-1622
A putative haloalkane dehalogenase has been identified in a marine Rhodobacteraceae and subsequently cloned and over-expressed in Escherichia coli. The enzyme has highest activity towards the substrates 1,6-dichlorohexane, 1-bromooctane, 1,3-dibromopropane and 1-bromohexane. The crystal structures of the enzyme in the native and product bound forms reveal a large hydrophobic active site cavity. A deeper substrate binding pocket defines the enzyme preference towards substrates with longer carbon chains. Arg136 at the bottom of the substrate pocket is positioned to bind the distal halogen group of extended di-halogenated substrates.  相似文献   

16.
Lietz EJ  Truher H  Kahn D  Hokenson MJ  Fink AL 《Biochemistry》2000,39(17):4971-4981
Lysine 73 is a conserved active-site residue in the class A beta-lactamases, as well as other members of the serine penicillin-sensitive enzyme family; its role in catalysis remains controversial and uncertain. Mutation of Lys73 to alanine in the beta-lactamase from Bacillus licheniformis resulted in a substantial reduction in both turnover rate (k(cat)) and catalytic efficiency (k(cat)/K(m)), and a very significant shift in pK(1) to higher pH in the bell-shaped pH-rate profiles (k(cat)/K(m)) for several penicillin and cephalosporin substrates. The increase in pK(1) is consistent with the removal of the positive ammonium group of the lysine from the proximity of Glu166, to which the acid limb has been ascribed. The alkaline limb of the k(cat)/K(m) vs profiles is not shifted appreciably, as might have been expected if this limb reflected the ionization of Lys73 in the wild-type enzyme. The k(cat)/K(m) at the pH optimum for the mutant was down about 200-fold for penicillins and around 10(4) for cephalosporins, compared to the wild-type, suggesting significant differences in the mechanisms for catalysis of penicillins compared to cephalosporins. Burst kinetics were observed with several substrates assayed with K73A beta-lactamase, indicating an underlying branched-pathway kinetic scheme, and rate-limiting deacylation. FTIR analysis was used to determine whether acylation or deacylation was rate-limiting. In general, acylation was the rate-limiting step for cephalosporin substrates, whereas deacylation was rate-limiting for penicillin substrates. The results indicate that Lys73 plays an important role in both the acylation and deacylation steps of the catalytic mechanism. The effects of this mutation (K73A) indicate that Lys73 does not function as a general base in the catalytic mechanism of beta-lactamase. The existence of bell-shaped pH-rate profiles for the K73A variant suggests that Lys73 is not directly responsible for either limb in such plots. It is likely that both Glu166 and Lys73 are important to each other in terms of maintaining the optimum electrostatic environment for fully efficient catalytic activity to occur.  相似文献   

17.
The specificity of the cyclic AMP-dependent protein kinase was examined using two series of dodecapeptides as substrates. One series consisted of peptides of the general sequence (Gly)x-Arg-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y = 6. The other series consisted of peptides of the sequence (Gly)x-Lys-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y was again equal to 6. The peptides Gly-Gly-Gly-Gly-Gly-Gly-Gly-Arg-Arg-Ser-Leu-Gly and Gly-Gly-Gly-Gly-Gly-Gly-Gly-Lys-Arg-Ser-Leu-Gly were also examined. In the series in which the adjacent arginines were located various distances from the serine, the substrate for which the enzyme clearly exhibited optimal kinetic constants contained one amino acid residue between the basic residues and serine. Direct binding studies of N alpha-[3H]acetyl peptides to catalytic subunit of cyclic AMP-dependent protein kinase revealed a correlation between binding affinity and the ability to serve as substrate for the enzyme. In the second series in which the adjacent basic amino acids were Lys-Arg, optimal kinetic constants were again obtained when these residues were separated from serine by a single amino acid. This latter result was surprising in view of phosphorylation site sequences in the known physiologically significant protein substrates for the kinase, since those containing Lys-Arg all contain two amino acids between these residues and serine.  相似文献   

18.
A full-length cDNA clone of a serine proteinase, mouse brain serine proteinase (mBSP), was isolated from a mouse brain cDNA library. mBSP, which has been recently reported to be expressed in the hair follicles of nude mice, is most similar (88% identical) in sequence to rat myelencephalon-specific protease. The mBSP mRNA was steadily expressed in the brain of adult mice with a transient expression in the early fetal stage during development. The genomic structure of the mouse gene for mBSP was determined. The gene, which is mapped to chromosome 7B4-B5, is about 7.4 kilobases in size and contains 7 exons. Interestingly, the 5'-untranslated region of the mBSP gene was interrupted by two introns. In situ hybridization analyses revealed that mBSP is expressed in the white matter of the cerebellum, medulla oblongata, and capsula interna and capsula interna pars retrolenticularis of mouse brain. Further, mBSP was immunolocalized to the neuroglial cells in the white matter of the cerebellum. Recombinant mBSP was produced in the bacterial expression system and activated by lysyl endopeptidase digestion, and the activated enzyme was purified for characterization. The enzyme showed amidolytic activities preferentially cleaving Arg-X bonds when 4-methylcoumaryl-7-amide-containing peptide substrates were used. Typical serine proteinase inhibitors, such as diisopropyl fluorophosphates, phenylmethanesulfonyl fluoride, soybean trypsin inhibitor, aprotinin, leupeptin, antipain, and benzamidine, strongly inhibited the enzyme activity. The recombinant mBSP effectively hydrolyzed fibronectin and gelatin, but not laminin, collagens I and IV, or elastin. These results suggest that mBSP plays an important role in association with the function of the adult mouse brain.  相似文献   

19.
Penicillin-binding proteins (PBPs) are the main targets for beta-lactam antibiotics, such as penicillins and cephalosporins, in a wide range of bacterial species. In some Gram-positive strains, the surge of resistance to treatment with beta-lactams is primarily the result of the proliferation of mosaic PBP-encoding genes, which encode novel proteins by recombination. PBP2x is a primary resistance determinant in Streptococcus pneumoniae, and its modification is an essential step in the development of high level beta-lactam resistance. To understand such a resistance mechanism at an atomic level, we have solved the x-ray crystal structure of PBP2x from a highly penicillin-resistant clinical isolate of S. pneumoniae, Sp328, which harbors 83 mutations in the soluble region. In the proximity of the Sp328 PBP2x* active site, the Thr(338) --> Ala mutation weakens the local hydrogen bonding network, thus abrogating the stabilization of a crucial buried water molecule. In addition, the Ser(389) --> Leu and Asn(514) --> His mutations produce a destabilizing effect that generates an "open" active site. It has been suggested that peptidoglycan substrates for beta-lactam-resistant PBPs contain a large amount of abnormal, branched peptides, whereas sensitive strains tend to catalyze cross-linking of linear forms. Thus, in vivo, an "open" active site could facilitate the recognition of distinct, branched physiological substrates.  相似文献   

20.
Xenobiotic reductase A (XenA) from Pseudomonas putida 86 catalyzes the NADH/NADPH-dependent reduction of various substrates, including 2-cyclohexenone and 8-hydroxycoumarin. XenA is a member of the old yellow enzyme (OYE) family of flavoproteins and is structurally and functionally similar to other bacterial members of this enzyme class. A characteristic feature of XenA is the presence of a cysteine residue (Cys25) in the active site, where in most members of the OYE family a threonine residue is found that modulates the reduction potential of the FMN/FMNH- couple. We investigated the role of Cys25 by studying two variants in which the residue has been exchanged for a serine and an alanine residue. While the exchange against alanine has a remarkably small effect on the reduction potential, the reactivity and the structure of XenA, the exchange against serine increases the reduction potential by +82 mV, increases the rate constant of the reductive half-reaction and decreases the rate constant in the oxidative half-reaction. We determined six crystal structures at high to true atomic resolution (dmin 1.03-1.80 Å) of the three XenA variants with and without the substrate coumarin bound in the active site. The atomic resolution structure of XenA in complex with coumarin reveals a compressed active site geometry in which the isoalloxazine ring is sandwiched between coumarin and the protein backbone. The structures further reveal that the conformation of the active site and substrate interactions are preserved in the two variants, indicating that the observed changes are due to local effects only. We propose that Cys25 and the residues in its place determine which of the two half-reactions is rate limiting, depending on the substrate couple. This might help to explain why the genome of Pseudomonas putida encodes multiple xenobiotic reductases containing either cysteine, threonine or alanine in the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号