首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dawson RJ  Locher KP 《FEBS letters》2007,581(5):935-938
Staphylococcus aureus Sav1866 is a bacterial homolog of the human ABC transporter Mdr1 that causes multidrug resistance in cancer cells. We report the crystal structure of Sav1866 in complex with adenosine-5'-(beta,gamma-imido)triphosphate (AMP-PNP) at 3.4A resolution and compare it with the previously determined structure of Sav1866 with bound ADP. Besides differences in the ATP-binding sites, no significant conformational changes were observed. The results confirm that the ATP-bound state of multidrug ABC transporters is coupled to an outward-facing conformation of the transmembrane domains.  相似文献   

2.
Ariane Zutz  Hermann Schägger 《BBA》2009,1787(6):681-822
ABC transporters represent one of the largest families of membrane proteins that are found in all three phyla of life. Mitochondria comprise up to four ABC systems, ABCB7/ATM1, ABCB10/MDL1, ABCB8 and ABCB6. These half-transporters, which assemble into homodimeric complexes, are involved in a number of key cellular processes, e.g. biogenesis of cytosolic iron-sulfur clusters, heme biosynthesis, iron homeostasis, multidrug resistance, and protection against oxidative stress. Here, we summarize recent advances and emerging themes in our understanding of how these ABC systems in the inner and outer mitochondrial membrane fulfill their functions in important (patho) physiological processes, including neurodegenerative and hematological disorders.  相似文献   

3.
Multidrug resistance ABC transporters   总被引:11,自引:0,他引:11  
Chang G 《FEBS letters》2003,555(1):102-105
Clinical multidrug resistance is caused by a group of integral membrane proteins that transport hydrophobic drugs and lipids across the cell membrane. One class of these permeases, known as multidrug resistance ATP binding cassette (ABC) transporters, translocate these molecules by coupling drug/lipid efflux with energy derived from the hydrolysis of ATP. In this review, we examine both the structures and conformational changes of multidrug resistance ABC transporters. Together with the available biochemical and structural evidence, we propose a general mechanism for hydrophobic substrate transport coupled to ATP hydrolysis.  相似文献   

4.
The active extrusion of cytotoxic compounds from the cell by multidrug transporters is one of the major causes of failure of chemotherapeutic treatment of tumor cells and of infections by pathogenic microorganisms. The secondary multidrug transporter LmrP and the ATP-binding cassette (ABC) type multidrug transporter LmrA in Lactococcus lactis are representatives of the two major classes of multidrug transporters found in pro- and eukaryotic organisms. Therefore, knowledge of the molecular properties of LmrP and LmrA will have a wide significance for multidrug transporters in all living cells, and may enable the development of specific inhibitors and of new drugs which circumvent the action of multidrug transporters. Interestingly, LmrP and LmrA are transport proteins with very different protein structures, which use different mechanisms of energy coupling to transport drugs out of the cell. Surprisingly, both proteins have overlapping specificities for drugs, are inhibited by t he same set of modulators, and transport drugs via a similar transport mechanism. The structure-function relationships that dictate drug recognition and transport by LmrP and LmrA will represent an intriguing new area of research.  相似文献   

5.
ABC细胞膜转运蛋白是一个能转运多种底物的蛋白质家族,其在宿主对异物的防御机制和肿瘤细胞对抗癌药物的耐药性中发挥重要作用。ABC转运蛋白能将已进人细胞的外源性物质从胞内泵出胞外,是造成肿瘤细胞多药耐药的主要原因,其基因表达水平与细胞内药物浓度和耐药程度密切相关。近年来,肿瘤细胞多药耐药性研究炙手可热。我们简要综述ABC细胞膜转运蛋白的特点、分布、表达及其介导的细胞多药耐药方面的研究进展。  相似文献   

6.
ABC (ATP-binding cassette) transporters play an important role in the communication of various substrates across cell membranes. They are ubiquitous in prokaryotes and eukaryotes, and eukaryotic types (EK-types) are distinguished from prokaryotic types (PK-types) in terms of their genes and domain organizations. The EK-types and PK-types mainly consist of exporters and importers, respectively. Prokaryotes have both the EK-types and the PK-types. The EK-types in prokaryotes are usually called "bacterial multidrug ABC transporters," but they are not well characterized in comparison with the multidrug ABC transporters in eukaryotes. Thus, an exhaustive search of the EK-types among diverse organisms and detailed sequence classification and analysis would elucidate the evolutionary history of EK-types. It would also help shed some light on the fundamental repertoires of the wide variety of substrates through which multidrug ABC transporters in eukaryotes communicate. In this work, we have identified the EK-type ABC transporters in 126 prokaryotes using the profiles of the ATP-binding domain (NBD) of the EK-type ABC transporters from 12 eukaryotes. As a result, 11 clusters were identified from 1,046 EK-types ABC transporters. In particular, two large novel clusters emerged, corresponding to the bacterial multidrug ABC transporters related to the ABCB and ABCC families in eukaryotes, respectively. In the genomic context, most of these genes are located alone or adjacent to genes from the same clusters. Additionally, to detect functional divergences in the NBDs, the Kullback-Leibler divergence was measured among these bacterial multidrug transporters. As a result, several putative functional regions were identified, some corresponding to the predicted secondary structures. We also analyzed a phylogeny of the EK-type ABC transporters in both prokaryotes and eukaryotes, which revealed that the EK-type ABC transporters in prokaryotes have certain repertoires corresponding to the conventional ABC protein groups in eukaryotes. On the basis of these findings, we propose an updated evolutionary hypothesis in which the EK-type ABC transporters in both eukaryotes and prokaryotes consisted of several kinds of ABC transporters in putative ancestor cells before the divergence of eukaryotic and prokaryotic cells.  相似文献   

7.
肿瘤干细胞(TSC)的学说得到了越来越多人的认可,而且多种TSC已被鉴定。当前TSC研究的重点之一是靶向治疗问题。有多项实验结果支持,TSC高表达ABC转运体是其多药耐药性的重要原因,因此,靶向TSC的ABC转运体在肿瘤化疗中起着关键作用。我们总结了靶向治疗TSC的ABC转运体的研究概况、存在问题及解决策略,以期在该领域研究能有更快进展。  相似文献   

8.
9.
ABC transporters are a large and important family of membrane proteins involved in substrate transport across the membrane. The transported substrates are quite diverse, ranging from monatomic ions to large biomolecules. Consequently, some ABC transporters are involved in biomedically relevant situations, from genetic diseases to multidrug resistance. The most conserved domains in ABC transporters are the nucleotide binding domains (NBDs), which form a dimer responsible for the binding and hydrolysis of ATP, concomitantly with substrate translocation. To elucidate how ATP hydrolysis structurally affects the NBD dimer, and consequently the transporter, we performed a molecular dynamics study on the NBD dimer of the HlyB ABC exporter. We have observed a change in the contact surface between the monomers after hydrolysis, even though we have not seen dimer opening in any of the five 100 ns simulations. We have also identified specific regions that respond to ATP hydrolysis, in particular the X-loop motif of ABC exporters, which has been shown to be in contact with the coupling helices of the transmembrane domains (TMDs). We propose that this motif is an important part of the NBD-TMD communication in ABC exporters. Through nonequilibrium analysis, we have also identified gradual conformational changes within a short time scale after ATP hydrolysis.  相似文献   

10.
Every cell is separated from its external environment by a lipid membrane. Survival depends on the regulated and selective transport of nutrients, waste products and regulatory molecules across these membranes, a process that is often mediated by integral membrane proteins. The largest and most diverse of these membrane transport systems is the ATP binding cassette (ABC) family of membrane transport proteins. The ABC family is a large evolutionary conserved family of transmembrane proteins (> 250 members) present in all phyla, from bacteria to Homo sapiens, which require energy in the form of ATP hydrolysis to transport substrates against concentration gradients. In prokaryotes the majority of ABC transporters are involved in the transport of nutrients and other macromolecules into the cell. In eukaryotes, with the exception of the cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7), ABC transporters mobilize substrates from the cytoplasm out of the cell or into specific intracellular organelles. This review focuses on the members of the ABCG subfamily of transporters, which are conserved through evolution in multiple taxa. As discussed below, these proteins participate in multiple cellular homeostatic processes, and functional mutations in some of them have clinical relevance in humans.  相似文献   

11.
Mechanisms and strategies to overcome multiple drug resistance in cancer   总被引:10,自引:0,他引:10  
Ozben T 《FEBS letters》2006,580(12):2903-2909
One of the major problems in chemotherapy is multidrug resistance (MDR) against anticancer drugs. ATP-binding cassette (ABC) transporters are a family of proteins that mediate MDR via ATP-dependent drug efflux pumps. Many MDR inhibitors have been identified, but none of them have been proven clinically useful without side effects. Efforts continue to discover not toxic MDR inhibitors which lack pharmacokinetic interactions with anticancer drugs. Novel approaches have also been designed to inhibit or circumvent MDR. In this review, the structure and function of ABC transporters and development of MDR inhibitors are described briefly including various approaches to suppress MDR mechanisms.  相似文献   

12.
ATP-binding cassette (ABC) transporters constitute one of the largest families of integral membrane proteins, including importers, exporters, channels, receptors, and mechanotransducers, which fulfill a plethora of cellular tasks. ABC transporters are involved in nutrient uptake, hormone and xenobiotic secretion, ion and lipid homeostasis, antibiotic and multidrug resistance, and immunity, thus making them prime candidates for cellular regulation and pharmacological intervention. In recent years, numerous various structures of ABC transporters have been determined by X-ray crystallography or cryogenic electron microscopy. Structural and functional studies revealed that various auxiliary domains play key roles for the subcellular localization of ABC transporters and recruitment of regulatory factors. In this regard, the ABC transporter associated with antigen processing TAP stands out. In the endoplasmic reticulum membrane, TAP assembles the peptide-loading complex, which serves as a central checkpoint in adaptive immunity. Here, we discuss the various aspects of auxiliary domains for ABC transporter function with a particular emphasis on the structure of the peptide-loading complex, which is crucial for antigen presentation in adaptive immunity.  相似文献   

13.
ABC transporters are a large superfamily of integral membrane proteins involved in ATP-dependent transport across biological membranes. Members of this superfamily play roles in a number of phenomena of biomedical interest, including cystic fibrosis (CFTR) and multidrug resistance (P-glycoprotein, MRP). Most ABC transporters are predicted to consist of four domains, two membrane-spanning domains and two cytoplasmic domains. The latter contain conserved nucleotide-binding motifs. Attempts to determine the structure of ABC transporters and of their separate domains are in progress but have not yet been successful. To aid structure determination and possibly learn more about the domain boundaries, we set out to model nucleotide-binding domains (NBDs) of ABC transporters based on a known structure. Previous attempts to predict the 3D structure of NBDs were based solely on sequence similarity with known nucleotide-binding folds. We have analyzed the sequences of a number of nucleotide-binding domains with the algorithm THREADER, developed by D.T. Jones, and a possible fold was found in the structure of aspartate aminotransferase. We present a model for the N-terminal NBD of CFTR, based on the large domain of the A chain of aspartate aminotransferase. The model is refined using multiple sequence alignment, secondary structure prediction, and 3D-1D profiles. Our model seems to be in good agreement with known properties of nucleotide-binding domains and has some appealing characteristics compared with the previous models. Proteins 30:275–286, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Parasitic diseases, caused by protozoa, helminths and arthropods, rank among the most important problems in human and veterinary medicine, and in agriculture, leading to debilitating sicknesses and loss of life. In the absence of vaccines and with the general failure of vector eradication programs, drugs are the main line of defence, but the newest drugs are being tracked by the emergence of resistance in parasites, sharing ominous parallels with multidrug resistance in bacterial pathogens. Any of a number of mechanisms will elicit a drug resistance phenotype in parasites, including: active efflux, reduced uptake, target modification, drug modification, drug sequestration, by-pass shunting, or substrate competition. The role of ABC transporters in parasitic multidrug resistance mechanisms is being subjected to more scrutiny, due in part to the established roles of certain ABC transporters in human diseases, and also to an increasing portfolio of ABC transporters from parasite genome sequencing projects. For example, over 100 ABC transporters have been identified in the Escherichia coli genome, but to date only about 65 in all parasitic genomes. Long established laboratory investigations are now being assisted by molecular biology, bioinformatics, and computational modelling, and it is in these areas that the role of ABC transporters in parasitic multidrug resistance mechanisms may be defined and put in perspective with that of other proteins. We discuss ABC transporters in parasites, and conclude with an example of molecular modelling that identifies a new interaction between the structural domains of a parasite P-glycoprotein.  相似文献   

15.
Schistosomiasis, a neglected tropical disease affecting hundreds of millions, is caused by parasitic flatworms of the genus Schistosoma. Treatment and control of schistosomiasis relies almost exclusively on a single drug, praziquantel (PZQ), a dangerous situation for a disease of this magnitude. Though PZQ is highly effective overall, it has drawbacks, and reports of worms showing PZQ resistance, either induced in the laboratory or isolated from the field, are disconcerting. Multidrug transporters underlie multidrug resistance (MDR), a phenomenon in which resistance to a single drug is accompanied by unexpected cross-resistance to several structurally unrelated compounds. Some of the best studied multidrug transporters are members of the ancient and very large ATP-binding cassette (ABC) superfamily of efflux transporters. ABC multidrug transporters such as P-glycoprotein (Pgp; ABCB1) are also associated with drug resistance in parasites, including helminths such as schistosomes. In addition to their association with drug resistance, however, ABC transporters also function in a wide variety of physiological processes in metazoans. In this review, we examine recent studies that help define the role of schistosome ABC transporters in regulating drug susceptibility, and in normal schistosome physiology, including reproduction and excretory activity. We postulate that schistosome ABC transporters could be useful targets for compounds that enhance the effectiveness of current therapeutics as well as for agents that act as antischistosomals on their own.  相似文献   

16.
Abstract

ATP-binding cassette transporters are multi-subunit membrane pumps that transport substrates across membranes. While significant in the transport process, transporter architecture exhibits a range of diversity that we are only beginning to recognize. This divergence may provide insight into the mechanisms of substrate transport and homeostasis. Until recently, ABC importers have been classified into two types, but with the emergence of energy-coupling factor (ECF) transporters there are potentially three types of ABC importers. In this review, we summarize an expansive body of research on the three types of importers with an emphasis on the basics that underlie ABC importers, such as structure, subunit composition and mechanism.  相似文献   

17.
18.
The ABC proteins are a family of membrane transporters that mediates the extrusion from cells of a wide variety of structurally unrelated substrates. The current review focuses on the role of these efflux pumps located in the intestine on the low oral bioavailability of trans-resveratrol. The enterocytes hold in the apical membrane three transporters, namely, P-glycoprotein (P-gp), multidrug resistance associated protein 2 (MRP2) and breast cancer resistance protein (BCRP), whereas the basolateral membrane contains multidrug resistance associated protein 3 (MRP3). The use of different specific inhibitors of these transporters as well as knockout mice enabled us to conclude that MRP2 and BCRP are involved in the extrusion of trans-resveratrol glucuronide and sulfate to the intestinal lumen without the participation of P-gp. The role of these transporters as a bottleneck in the absorption of trans-resveratrol cannot be undervalued affecting not only the bioavailability of its glucuronide and sulfate but also their distribution in the different organs.  相似文献   

19.
The phenomenon of multidrug resistance in cancer is often associated with the overexpression of the ABC (ATP-binding cassette) transporters Pgp (P-glycoprotein) (ABCB1), MRP1 (multidrug resistance-associated protein 1) (ABCC1) and ABCG2 [BCRP (breast cancer resistance protein)]. Since the discovery of Pgp over 35 years ago, studies have convincingly linked ABC transporter expression to poor outcome in several cancer types, leading to the development of transporter inhibitors. Three generations of inhibitors later, we are still no closer to validating the 'Pgp hypothesis', the idea that increased chemotherapy efficacy can be achieved by inhibition of transporter-mediated efflux. In this chapter, we highlight the difficulties and past failures encountered in the development of clinical inhibitors of ABC transporters. We discuss the challenges that remain in our effort to exploit decades of work on ABC transporters in oncology. In learning from past mistakes, it is hoped that ABC transporters can be developed as targets for clinical intervention.  相似文献   

20.
An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC(2)(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号