首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transendothelial transfer of macromolecules in vitro   总被引:4,自引:0,他引:4  
The transendothelial transfer of macromolecules has been difficult to study because of the complexities of the in vivo models. We have developed a model of an endothelium cultured on a permeable support and used it to characterize the transendothelial transfer of albumin. Porcine pulmonary artery endothelial cells form a single layer of cells lining the gelatin-impregnated polycarbonate micropore filters, and the cells develop junctional structures similar to endothelial tight junctions observed in vivo. The monolayer resists the flow of electrical current, and the resistance is sensitive to extracellular calcium concentrations. Albumin transfer across the cultured monolayers was found to be asymmetric, and the rate of transfer from interstitium to lumen was greater than that from lumen to interstitium. The asymmetric transfer occurred against a concentration gradient and was abolished by treating the monolayer with NaCN. Increasing albumin concentrations increased the rate of interstitial to luminal transfer, and the process demonstrated saturation at an interstitial albumin concentration of 725 microM. These data point out the usefulness of the in vitro preparation to identify potentially important aspects of transendothelial transport that would be difficult to detect in vivo.  相似文献   

2.
In vivo and in vitro studies indicate that 4-hydroxy-2-nonenal (4-HNE), generated by cellular lipid peroxidation or after oxidative stress, affects endothelial permeability and vascular tone. However, the mechanism(s) of 4-HNE-induced endothelial barrier function is not well defined. Here we provide evidence for the first time on the involvement of mitogen-activated protein kinases (MAPKs) in 4-HNE-mediated actin stress fiber formation and barrier function in lung endothelial cells. Treatment of bovine lung microvascular endothelial cells with hydrogen peroxide (H(2)O(2)), as a model oxidant, resulted in accumulation of 4-HNE as evidenced by the formation of 4-HNE-Michael protein adducts. Exposure of cells to 4-HNE, in a dose- and time-dependent manner, decreased endothelial cell permeability measured as transendothelial electrical resistance. The 4-HNE-induced permeability changes were not because of cytotoxicity or endothelial cell apoptosis, which occurred after prolonged treatment and at higher concentrations of 4-HNE. 4-HNE-induced changes in transendothelial electrical resistance were calcium independent, as 4-HNE did not alter intracellular free calcium levels as compared with H(2)O(2) or diperoxovanadate. Stimulation of quiescent cells with 4-HNE (1-100 microm) resulted in phosphorylation of ERK1/2, JNK, and p38 MAPKs, and actin cytoskeleton remodeling. Furthermore, pretreatment of bovine lung microvascular endothelial cells with PD 98059 (25 microm), an inhibitor of MEK1/2, or SP 600125 (25 microm), an inhibitor of JNK, or SB 202190 (25 microm), an inhibitor of p38 MAPK, partially attenuated 4-HNE-mediated barrier function and cytoskeletal remodeling. These results suggest that the activation of ERK, JNK, and p38 MAP kinases is involved in 4-HNE-mediated actin remodeling and endothelial barrier function.  相似文献   

3.
Permeability characteristics of cultured endothelial cell monolayers   总被引:8,自引:0,他引:8  
The purpose of this study was to characterize the permeability characteristics of an in vitro endothelial cell monolayer system and relate this information to available in vivo data. We cultured bovine fetal aortic endothelial cells on fibronectin-coated polycarbonate filters and confirmed that our system was similar to others in the literature with regard to morphological appearance, transendothelial electrical resistance, and the permeability coefficient for albumin. We then compared our system with in vivo endothelium by studying the movement of neutral and negatively charged radiolabeled dextran tracers across the monolayer and by using electron microscopy to follow the pathways taken by native ferritin. There were a number of differences. The permeability of our monolayer was 10-100 times greater than seen in intact endothelium, there was no evidence of "restricted" diffusion or charge selectivity, and ferritin was able to move freely into the subendothelial space. The reason for these differences appeared to be small (0.5-2.0 micron) gaps between 5 and 10% of the endothelial cells. Although the current use of cultured endothelial cells on porous supports may provide useful information about the interaction of macromolecules with the endothelium, there appear to be differences in the transendothelial permeability characteristics of these models and in vivo blood vessels.  相似文献   

4.
Diperoxovanadate (DPV), a potent inhibitor of protein tyrosine phosphatases and activator of tyrosine kinases, alters endothelial barrier function via signaling pathways that are incompletely understood. One potential pathway is Src kinase-mediated tyrosine phosphorylation of proteins such as cortactin that regulate endothelial cell (EC) cytoskeleton assembly. As DPV modulates endothelial cell signaling via protein tyrosine phosphorylation, we determined the role of DPV-induced intracellular free calcium concentration ([Ca2+]i) in activation of Src kinase, cytoskeletal remodeling, and barrier function in bovine pulmonary artery endothelial cells (BPAECs). DPV in a dose- and time-dependent fashion increased [Ca2+]i, which was partially blocked by the calcium channel blockers nifedipine and Gd3+. Treatment of cells with thapsigargin released Ca2+ from the endoplasmic reticulum, and subsequent addition of DPV caused no further change in [Ca2+]i. These data suggest that DPV-induced [Ca2+]i includes Ca release from the endoplasmic reticulum and Ca influx through store-operated calcium entry. Furthermore, DPV induced an increase in protein tyrosine phosphorylation, phosphorylation of Src and cortactin, actin remodeling, and altered transendothelial electrical resistance in BPAECs. These DPV-mediated effects were significantly attenuated by BAPTA (25 microM), a chelator of [Ca2+]i. Immunofluorescence studies reveal that the DPV-mediated colocalization of cortactin with peripheral actin was also prevented by BAPTA. Chelation of extracellular Ca2+ by EGTA had marginal effects on DPV-induced phosphorylation of Src and cortactin; actin stress fibers formation, however, affected EC barrier function. These data suggest that DPV-induced changes in [Ca2+]i regulate endothelial barrier function using signaling pathways that involve Src and cytoskeleton remodeling.  相似文献   

5.
Cerebral endothelial cells accomplish the barrier functions between blood and brain interstitium. Structural features are the tight junctions between adjacent endothelial cells and the formation of marginal folds at the cell-cell contacts. The glucocorticoid hydrocortisone (HC) has been reported to enforce the blood-brain-barrier in vitro measurable by an increase of the transendothelial electrical resistance. This study shows the impact of HC on the mechanical and morphological properties of confluent cell layers of brain microvascular endothelial cells. HC induces an increase in height of these marginal folds and a reduction of the intercellular contact surface. These morphological changes are accompanied by changes in cell elasticity. Staining of fibrous actin indicates that HC induces a reorganization of the actin cortex. The quantitative determination of the local elastic properties of cells reveals for the first time an HC-induced increase of the representative Young's modulus according to cytoskeletal rearrangements. For this study, cells of two different species, porcine brain capillary endothelial cells and murine brain capillary endothelial cells, were used yielding similar results, which clearly demonstrates that the HC effect on the cell elasticity is species independent.  相似文献   

6.
Summary Cocultures of human umbilical vein endothelial cells (ECV304) and rat glioma cells (C6) from two commercial sources, American Type Culture Collection and European Collection of Animal Cell Cultures, were evaluated as an in vitro model for the blood-brain barrier. Monolayers of endothelial cells grown in the presence or absence of glial cells were examined for transendothelial electrical resistance, sucrose permeability, morphology, multidrug resistance-associated protein expression, and P-glycoprotein expression and function. Coculture of glial cells with endothelial cells increased electrical resistance and decreased sucrose permeability across European endothelial cell monolayers, but had no effect on American endothelial cells. Coculture of European glial cells with endothelial cells caused cell flattening and decreased cell stacking with both European and American endothelial cells. No P-glycoprotein or multidrug resistance-associated protein was immunodetected in endothelial cells grown in glial cell-conditioned medium. Functional P-glycoprotein was demonstrated in American endothelial cells selected in vinblastine-containing medium over eight passages, but these cells did not form a tight endothelium. In conclusion, while European glial cells confer blood-brain barrier-like morphology and barrier integrity to European endothelial cells in coculture, the European endothelial-glial cell coculture model does not express P-glycoprotein, normally found at the blood-brain barrier. Further, the response of endothelial cells to glial factors was dependent on cell source, implying heterogeneity among cell populations. On the basis of these observations, the umbilical vein endothelial cell-glial cell coculture model does not appear to be a viable model for predicting blood-brain barrier penetration of drug molecules.  相似文献   

7.
Eosinophils represent major effector cells in the allergic inflammation. In contrast to neutrophils, the mechanism of eosinophil activation during the inflammatory response is poorly understood. In this study, the relation between calcium fluxes, chemotaxis, and actin polymerization in eosinophils from healthy non-atopic donors was investigated. Pre-incubation of eosinophils with the intracellular calcium chelator BAPTA dose-dependently prevented an increase in the intracellular calcium concentration ([Ca2+]i), whereas the depletion of extracellular calcium in the test medium had no effect. The chemotactic response of eosinophils, which was measured by the modified boyden chamber technique upon stimulation with RANTES, C5a and PAF, was dose-dependently inhibited by the chelation of intracellular calcium as well as inactivation of the cells in Ca2+-depleted medium. To evaluate whether other cell functions which are involved in the migratory response of eosinophils might be dependent on intracellular and extracellular calcium, actin polymerization was investigated. Flow-cytometric measurement of F-actin with NBD-phallacidin revealed that actin polymerization in human eosinophils in response to RANTES, C5a, and PAF was dose-dependently inhibited by the intracellular calcium chelator BAPTA. Since it is well known that actin polymerization in neutrophils is not affected by chelation of intracellular calcium, actin polymerization in these cells was investigated under the same conditions as for eosinophils. In contrast to eosinophils, BAPTA did not inhibit actin polymerization in neutrophils. In summary, these data demonstrate that intracellular calcium fluxes represent a prerequisite for eosinophil chemotaxis and actin polymerization in human eosinophils. Furthermore, regulation of actin polymerization in eosinophils differed from that of neutrophils on the level of intracellular calcium fluxes. © 1996 Wiley-Liss, Inc.  相似文献   

8.
T‐cadherin is an atypical member of the cadherin family, which lacks the transmembrane and intracellular domains and is attached to the plasma membrane via a glycosylphosphatidylinositol anchor. Unlike canonical cadherins, it is believed to function primarily as a signaling molecule. T‐cadherin is highly expressed in endothelium. Using transendothelial electrical resistance measurements and siRNA‐mediated depletion of T‐cadherin in human umbilical vein endothelial cells, we examined its involvement in regulation of endothelial barrier. We found that in resting confluent monolayers adjusted either to 1% or 10% serum, T‐cadherin depletion modestly, but consistently reduced transendothelial resistance. This was accompanied by increased phosphorylation of Akt and LIM kinase, reduced phosphorylation of p38 MAP kinase, but no difference in tubulin acetylation and in phosphorylation of an actin filament severing protein cofilin and myosin light chain kinase. Serum stimulation elicited a biphasic increase in resistance with peaks at 0.5 and 4–5 h, which was suppressed by a PI3 kinase/Akt inhibitor wortmannin and a p38 inhibitor SB 239063. T‐cadherin depletion increased transendothelial resistance between the two peaks and reduced the amplitude of the second peak. T‐cadherin depletion abrogated serum‐induced Akt phosphorylation at Thr308 and reduced phosphorylation at Ser473, reduced phosphorylation of cofilin, and accelerated tubulin deacetylation. Adiponectin slightly improved transendothelial resistance irrespectively of T‐cadherin depletion. T‐cadherin depletion also resulted in a reduced sensitivity and delayed responses to thrombin. These data implicate T‐cadherin in regulation of endothelial barrier function, and suggest a complex signaling network that links T‐cadherin and regulation of barrier function. J. Cell. Physiol. 223: 94–102, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Filamin B mediates ICAM-1-driven leukocyte transendothelial migration   总被引:1,自引:0,他引:1  
During inflammation, the endothelium mediates rolling and firm adhesion of activated leukocytes. Integrin-mediated adhesion to endothelial ligands of the Ig-superfamily induces intracellular signaling in endothelial cells, which promotes leukocyte transendothelial migration. We identified the actin cross-linking molecule filamin B as a novel binding partner for intracellular adhesion molecule-1 (ICAM-1). Immune precipitation as well as laser scanning confocal microscopy confirmed the specific interaction and co-localization of endogenous filamin B with ICAM-1. Importantly, clustering of ICAM-1 promotes the ICAM-1-filamin B interaction. To investigate the functional consequences of filamin B binding to ICAM-1, we used small interfering RNA to reduce filamin B expression in ICAM-1-GFP expressing HeLa cells. We found that filamin B is required for the lateral mobility of ICAM-1 and for ICAM-1-induced transmigration of leukocytes. Reducing filamin B expression in primary human endothelial cells resulted in reduced recruitment of ICAM-1 to endothelial docking structures, reduced firm adhesion of the leukocytes to the endothelium, and inhibition of transendothelial migration. In conclusion, this study identifies filamin B as a molecular linker that mediates ICAM-1-driven transendothelial migration.  相似文献   

10.
Endogenous albumin was revealed over cellular structures of rat ascendent aorta endothelia and mesothelium, with high resolution and specificity, by applying the protein A-gold immunocytochemical approach. This approach allows albumin distribution to be studied under steady-state conditions. The cellular layers evaluated were the aortic endothelium, the capillary endothelium (vasa vasorum), and the mesothelium externally lining the aorta at this level. Gold particles, revealing albumin antigenic sites, were preferentially located over plasmalemmal vesicles and intercellular clefts of endothelial and mesothelial cells, though with different labeling intensities. The interstitial space was also labeled. Morphometrical evaluation of plasmalemmal vesicles demonstrated a higher surface density for these structures in capillary endothelial cells (12%) compared with those in aortic endothelial (5%) and mesothelial cells (2%). Quantitation of gold labeling intensities over these structures revealed a higher labeling over plasmalemmal vesicles of capillary endothelium than over those of aortic endothelium and mesothelium. This result, together with the higher surface density of plasmalemmal vesicles found in capillary endothelium, suggest an important role of these structures in the transendothelial passage of endogenous albumin, particularly for capillary endothelium. On the other hand, labeling densities over mesothelial clefts were found to be higher than those of capillary and aortic endothelia. Results from this study concur with the proposal of a differential passage of albumin according to the cell lining considered, and suggest to a role for mesothelial intercellular clefts in contributing to the presence of albumin in interstitial spaces.  相似文献   

11.
Abundant evidence indicates that lysophosphatidylcholine (LPC) is proinflammatory and atherogenic. In the vascular endothelium, LPC increases permeability and expression of proinflammatory molecules such as adhesion molecules and cytokines. Yet, mechanisms by which LPC mediates these activities remain unclear and controversial. Recent evidence implicates involvement of a novel subfamily of G protein-coupled receptors (GPR4, G2A, OGR1, and TDAG8) that are sensitive to lysolipids and protons. We previously reported that one of these receptors, GPR4, is selectively expressed by a variety of endothelial cells and therefore hypothesize that the LPC-stimulated endothelial barrier dysfunction is mediated through GPR4. We developed a peptide Ab against GPR4 that detected GPR4 expression in transfected COS 7 cells and endogenous GPR4 expression in endothelial cells by Western blot. Endothelial cells infected with a retrovirus containing small interference RNA (siRNA) to GPR4 resulted in 40-50% decreased GPR4 expression, which corresponded with partial prevention of the LPC-induced 1) decrease in transendothelial resistance, 2) stress fiber formation, and 3) activation of RhoA. Furthermore, coexpression of the siRNA-GPR4 with a siRNA-resistant mutant GPR4 fully restored the LPC-induced resistance decrease. However, extracellular pH of <7.4 did not alter baseline or LPC-stimulated resistances. The results provide strong evidence that the LPC-mediated endothelial barrier dysfunction is regulated by endogenous GPR4 in endothelial cells and suggest that GPR4 may play a critical role in the inflammatory responses activated by LPC.  相似文献   

12.
Peripheral inflammation can aggravate local brain inflammation and neuronal death. The blood-brain barrier (BBB) is a key player in the event. On a relevant in vitro model of primary rat brain endothelial cells co-cultured with primary rat astroglia cells lipopolysaccharide (LPS)-induced changes in several BBB functions have been investigated. LPS-treatment resulted in a dose- and time-dependent decrease in the integrity of endothelial monolayers: transendothelial electrical resistance dropped, while flux of permeability markers fluorescein and albumin significantly increased. Immunostaining for junctional proteins ZO-1, claudin-5 and beta-catenin was significantly weaker in LPS-treated endothelial cells than in control monolayers. LPS also reduced the intensity and changed the pattern of ZO-1 immunostaining in freshly isolated rat brain microvessels. The activity of P-glycoprotein, an important efflux pump at the BBB, was also inhibited by LPS. At the same time production of reactive oxygen species and nitric oxide was increased in brain endothelial cells treated with LPS. Pentosan polysulfate, a polyanionic polysaccharide could reduce the deleterious effects of LPS on BBB permeability, and P-glycoprotein activity. LPS-stimulated increase in the production of reactive oxygen species and nitric oxide was also decreased by pentosan treatment. The protective effect of pentosan for brain endothelium can be of therapeutical significance in bacterial infections affecting the BBB.  相似文献   

13.
We have developed a method for studying the permeability properties of human endothelia in vitro. Human umbilical vein endothelial cells (HUVEC) were cultured on a substrate of human amnion. Confluent monolayers of these cells demonstrated 6-12 delta.cm2 of electrical resistance (a measure of their permeability to ions) and restricted the transendothelial passage of albumin from their apical to their basal surface. To determine whether leukocyte emigration alters endothelial permeability in this model, we examined the effects of migrating human polymorphonuclear leukocytes (PMN) on these two parameters. Few PMN migrated across the HUVEC monolayers in the absence of chemoattractants. In response to chemoattractants, PMN migration through HUVEC monolayers was virtually complete within 10 minutes and occurred at random locations throughout the monolayer. PMN migrated across the monolayer via the paracellular pathway. Although one PMN migrated across the monolayer for each HUVEC, PMN migration induced no change in electrical resistance or albumin permeability of these monolayers. At this PMN:HUVEC ratio, these permeability findings were correlated morphologically to measurements that HUVEC paracellular pathway size increases by less than 0.22% with PMN migration. This increase is insufficient to effect a measurable change in the electrical resistance of the endothelial cell monolayer. These findings demonstrate that increased permeability of cultured endothelial cell monolayers is not a necessary consequence of PMN emigration.  相似文献   

14.
Sphingosine 1-phosphate (S1P) rapidly increases endothelial barrier function and induces the assembly of the adherens junction proteins vascular endothelial (VE)-cadherin and catenins. Since VE-cadherin contributes to the stabilization of the endothelial barrier, we determined whether the rapid, barrier-enhancing activity of S1P requires VE-cadherin. Ca(2+)-dependent, homophilic VE-cadherin binding of endothelial cells, derived from human umbilical veins and grown as monolayers, was disrupted with EGTA, an antibody to the extracellular domain of VE-cadherin, or gene silencing of VE-cadherin with small interfering RNA. All three protocols caused a reduction in the immunofluorescent localization of VE-cadherin at intercellular junctions, the separation of adjacent cells, and a decrease in basal endothelial electrical resistance. In all three conditions, S1P rapidly increased endothelial electrical resistance. These findings demonstrate that S1P enhances the endothelial barrier independently of homophilic VE-cadherin binding. Junctional localization of VE-cadherin, however, was associated with the sustained activity of S1P. Imaging with phase-contrast and differential interference contrast optics revealed that S1P induced cell spreading and closure of intercellular gaps. Pretreatment with latrunculin B, an inhibitor of actin polymerization, or Y-27632, a Rho kinase inhibitor, attenuated cell spreading and the rapid increase in electrical resistance induced by S1P. We conclude that S1P rapidly closes intercellular gaps, resulting in an increased electrical resistance across endothelial cell monolayers, via cell spreading and Rho kinase and independently of VE-cadherin.  相似文献   

15.
We have previously shown that thrombin induces endothelial cell barrier dysfunction via cytoskeleton activation and contraction and have determined the important role of endothelial cell myosin light chain kinase (MLCK) in this process. In the present study we explored p38 MAP kinase as a potentially important enzyme in thrombin-mediated endothelial cell contractile response and permeability. Thrombin induces significant p38 MAP kinase activation in a time-dependent manner with maximal effect at 30 min, which correlates with increased phosphorylation of actin- and myosin-binding protein, caldesmon. Both SB-203580 and dominant negative p38 adenoviral vector significantly attenuated thrombin-induced declines in transendothelial electrical resistance. Consistent with these data SB-203580 decreased actin stress fiber formation produced by thrombin in endothelium. In addition, dominant negative p38 had no effect on thrombin-induced myosin light chain diphosphorylation. Thrombin-induced total and site-specific caldesmon phosphorylation (Ser789) as well as dissociation of caldesmon-myosin complex were attenuated by SB-203580 pretreatment. These results suggest the involvement of p38 MAP kinase activities and caldesmon phosphorylation in the MLCK-independent regulation of thrombin-induced endothelial cell permeability.  相似文献   

16.
Severe influenza infections are complicated by acute lung injury, a syndrome of pulmonary microvascular leak. The pathogenesis of this complication is unclear. We hypothesized that human influenza could directly infect the lung microvascular endothelium, leading to loss of endothelial barrier function. We infected human lung microvascular endothelium with both clinical and laboratory strains of human influenza. Permeability of endothelial monolayers was assessed by spectrofluorimetry and by measurement of the transendothelial electrical resistance. We determined the molecular mechanisms of flu-induced endothelial permeability and developed a mouse model of severe influenza. We found that both clinical and laboratory strains of human influenza can infect and replicate in human pulmonary microvascular endothelium, leading to a marked increase in permeability. This was caused by apoptosis of the lung endothelium, since inhibition of caspases greatly attenuated influenza-induced endothelial leak. Remarkably, replication-deficient virus also caused a significant degree of endothelial permeability, despite displaying no cytotoxic effects to the endothelium. Instead, replication-deficient virus induced degradation of the tight junction protein claudin-5; the adherens junction protein VE-cadherin and the actin cytoskeleton were unaffected. Over-expression of claudin-5 was sufficient to prevent replication-deficient virus-induced permeability. The barrier-protective agent formoterol was able to markedly attenuate flu-induced leak in association with dose-dependent induction of claudin-5. Finally, mice infected with human influenza developed pulmonary edema that was abrogated by parenteral treatment with formoterol. Thus, we describe two distinct mechanisms by which human influenza can induce pulmonary microvascular leak. Our findings have implications for the pathogenesis and treatment of acute lung injury from severe influenza.  相似文献   

17.
Cancer progression towards metastasis follows a defined sequence of events described as the metastatic cascade. For extravasation and transendothelial migration metastatic cells interact first with endothelial cells. Yet the role of endothelial cells during the process of metastasis formation and extravasation is still unclear, and the interaction between metastatic and endothelial cells during transendothelial migration is poorly understood. Since tumor cells are well known to express TGF-β, and the compact endothelial layer undergoes a series of changes during metastatic extravasation (cell contact disruption, cytoskeletal reorganization, enhanced contractility), we hypothesized that an EndMT may be necessary for metastatic extravasation. We demonstrate that primary cultured rat brain endothelial cells (BEC) undergo EndMT upon TGF-β1 treatment, characterized by the loss of tight and adherens junction proteins, expression of fibronectin, β1-integrin, calponin and α-smooth muscle actin (SMA). B16/F10 cell line conditioned and activated medium (ACM) had similar effects: claudin-5 down-regulation, fibronectin and SMA expression. Inhibition of TGF-β signaling during B16/F10 ACM stimulation using SB-431542 maintained claudin-5 levels and mitigated fibronectin and SMA expression. B16/F10 ACM stimulation of BECs led to phosphorylation of Smad2 and Smad3. SB-431542 prevented SMA up-regulation upon stimulation of BECs with A2058, MCF-7 and MDA-MB231 ACM as well. Moreover, B16/F10 ACM caused a reduction in transendothelial electrical resistance, enhanced the number of melanoma cells adhering to and transmigrating through the endothelial layer, in a TGF-β-dependent manner. These effects were not confined to BECs: HUVECs showed TGF-β-dependent SMA expression when stimulated with breast cancer cell line ACM. Our results indicate that an EndMT may be necessary for metastatic transendothelial migration, and this transition may be one of the potential mechanisms occurring during the complex phenomenon known as metastatic extravasation.  相似文献   

18.
Protein tyrosine phosphorylation is tightly regulated through the actions of both protein tyrosine kinases and protein tyrosine phosphatases. In this study, we demonstrate that protein tyrosine phosphatase inhibition promotes tyrosine phosphorylation of endothelial cell-cell adherens junction proteins, opens an endothelial paracellular pathway, and increases both transendothelial albumin flux and neutrophil migration. Tyrosine phosphatase inhibition with sodium orthovanadate or phenylarsine oxide induced dose- and time-dependent increases in [14C]bovine serum albumin flux across postconfluent bovine pulmonary artery endothelial cell monolayers. These increases in albumin flux were coincident with actin reorganization and intercellular gap formation in both postconfluent monolayers and preformed endothelial cell capillary tubes. Vanadate (25 microM) increased tyrosine phosphorylation of endothelial cell proteins 12-fold within 1 h. Tyrosine phosphorylated proteins were immunolocalized to the intercellular boundaries, and several were identified as the endothelial cell-cell adherens junction proteins, vascular-endothelial cadherin, and beta-, gamma-, and p120-catenin as well as platelet endothelial cell adhesion molecule-1. Of note, these tyrosine phosphorylation events were not associated with disassembly of the adherens junction complex or its uncoupling from the actin cytoskeleton. The dose and time requirements for vanadate-induced increases in phosphorylation were comparable with those defined for increments in transendothelial [14C]albumin flux and neutrophil migration, and pretreatment with the tyrosine kinase inhibitor herbimycin A protected against these effects. These data suggest that protein tyrosine phosphatases and their substrates, which localize to the endothelial cell-cell boundaries, regulate adherens junctional integrity, the movement of macromolecules and cells through the endothelial paracellular pathway, and capillary tube stability.  相似文献   

19.
《The Journal of cell biology》1984,98(3):1033-1041
Bovine microvascular endothelial cells (BMECs) proliferated to confluence on the stromal surface of human amniotic membrane that had been denuded of its natural epithelium. The resulting cultures had the following characteristics: (a) The endothelial cells formed a thin, continuous monolayer and, like their in vivo counterparts, contained basal adhesion plaques and large numbers of cytoplasmic vesicles and 10- nm filaments. In addition, the endothelial cells elaborated a basement membrane-like structure. (b) The borders of the BMECs reacted with AgNO3 to produce the "flagstone" pattern typical of endothelium stained with this reagent in vivo. (c) More than 90% of the zones of contact between endothelial cells examined 8 d after plating prevented passage of a macromolecular probe (wheat germ agglutinin conjugated to horseradish peroxidase) across the BMEC monolayer. (d) 8 d-old cultures displayed a transendothelial electrical resistance that averaged 69 +/- 28 omega X cm2. Monolayers of BMECs maintained on amnion thus resemble in vivo endothelium in several respects and should provide a useful and relevant model for the in vitro study of various phenomena that occur at the microvascular wall.  相似文献   

20.
Ramsohoye  P.V.  Fritz  I.B. 《Neurochemical research》1998,23(12):1545-1551
Factors secreted by C6 glioma cells which induce electrical resistances across endothelial monolayers in an in vitro blood-brain barrier model have been partially characterised for the first time. These transendothelial electrical resistances (TEERs) were only evident when cell-free conditioned medium derived from C6 glioma cells was applied to the basolateral surfaces of confluent ECV304 or ECV304-9 cells which are both human umbilical vein endothelial cell lines (HUVEC). Electrical resistance values as high as 600 ohm. sq cm were obtained with this blood-brain barrier model and ultrafiltration techniques suggest that any factor(s) in the conditioned medium responsible for these TEERs have molecular masses of less than 1000 Da. Enzymic proteolysis and heat treatment carried out on the conditioned medium failed to inhibit its effect on the HUVEC monolayers suggesting that these C6 cell-secreted factors are unlikely to be proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号