首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our knowledge on the functional anatomy of bacteria is based on the electron microscopic (EM) studies performed during the last forty years. Most pathogenic properties however cannot be visualized in EM because they are not related to defined structures. In contrast, EM studies have provided important data on the behaviour of pathogenic bacteria in their host cells. They have shown that many bacterial species have developed different stratagems to survive and multiply in their host cell. Some are even able to use the host cell machinery to move and invade adjacent cells.  相似文献   

2.
Microbial organisms are ubiquitous in nature and often form communities closely associated with their host, referred to as the microbiome. The microbiome has strong influence on species interactions, but microbiome studies rarely take interactions between hosts into account, and network interaction studies rarely consider microbiomes. Here, we propose to use metacommunity theory as a framework to unify research on microbiomes and host communities by considering host insects and their microbes as discretely defined “communities of communities” linked by dispersal (transmission) through biotic interactions. We provide an overview of the effects of heritable symbiotic bacteria on their insect hosts and how those effects subsequently influence host interactions, thereby altering the host community. We suggest multiple scenarios for integrating the microbiome into metacommunity ecology and demonstrate ways in which to employ and parameterize models of symbiont transmission to quantitatively assess metacommunity processes in host‐associated microbial systems. Successfully incorporating microbiota into community‐level studies is a crucial step for understanding the importance of the microbiome to host species and their interactions.  相似文献   

3.
In the past decades impressive knowledge has been accumulated concerning the basic mechanisms of interactions between intracellular bacteria and their host cells. Comparatively little is known on the metabolic requirements necessary for efficient replication of these bacteria within their specific host cell compartments. Recent developments in functional genomics have led to more extensive studies of the metabolic aspects that may be crucial for understanding the pathogenesis of intracellular bacteria. Here we summarize our present knowledge on the physiology of L. monocytogenes with emphasis on those parts that seem to be important for its ability to replicate in the cytosol of mammalian host cells.  相似文献   

4.
The intracellular symbiotic bacteria of filarial nematodes have inspired new ideas for the control of disease using antibacterial drugs. For effective, long-term control, this requires that the bacteria are essential to their nematode hosts. Two recent studies offer conflicting evidence: long, close coevolution between most filarial nematodes and their symbionts contrasts with many species having naturally lost them. An attempt to transfer symbionts to an uninfected host found that the bacteria did not thrive, suggesting they are adapted to one host.  相似文献   

5.
1. In natural communities, multiple host and parasitoid species are linked to form complex networks of trophic and non‐trophic interactions. Understanding how these networks will respond to global warming is of wide relevance for agriculture and conservation. 2. This study synthesises the emerging evidence surrounding host–parasitoid networks in the context of global warming. The suite of direct and indirect interaction types within host–parasitoid networks is summarised, as well as their sensitivity to temperature changes. The study also compiles and reviews studies investigating the responses of whole host–parasitoid networks to increasing temperatures or proxy variables. The findings reveal there is limited evidence overall for the prediction that parasitism will be reduced under global warming: approximately equal numbers of studies show elevated and reduced parasitism. 3. Increasingly, endosymbiotic bacteria are recognised as influential mediators of host–parasitoid interactions. These endosymbionts can change how individual species respond to global warming, and their effects can cascade to affect whole host–parasitoid networks. The evidence that symbiotic bacteria are likely to affect the response of host–parasitoid networks to global warming is reviewed. Symbionts can protect hosts from their parasitoids or influence thermal tolerance of their host species. Furthermore, the symbionts themselves can be impacted by global warming. 4. Finally, the study considers the most promising avenues for future research into the mechanisms structuring host–parasitoid networks in the context of global warming. Alongside the increasing availability of modern molecular methods to document the structure of real, species‐rich host–parasitoid networks, the study highlights the utility of manipulative experiments and mathematical models.  相似文献   

6.
1.  The relationship between the composition of communities of micro-organisms and their hosts remains poorly understood. We conducted extensive field studies of feather-degrading bacteria, other cultivable bacteria, and fungi on the plumage of a migratory bird, the barn swallow Hirundo rustica Linnaeus, to understand the association between micro-organisms, host sociality and host antimicrobial defences, as reflected by the size of the uropygial gland.
2.  The abundance of feather-degrading bacteria, but not other cultivable bacteria or fungi, decreased with increasing size of the uropygial gland.
3.  Females had more feather-degrading bacteria than males.
4.  Barn swallows living in larger colonies had more feather-degrading bacteria than less social conspecifics.
5.  These findings suggest that the uropygial gland plays a specific role in regulating the abundance of feather-degrading bacteria that furthermore depends on the social environment of the host.  相似文献   

7.
Can bacterial interference prevent infection?   总被引:11,自引:0,他引:11  
The concept that one bacterial species can interfere with the ability of another to colonize and infect the host has at its foundation the prerequisite that bacteria must attach to biological surfaces to cause infection. Although this is an over-simplification of pathogenesis, it has led to studies aimed at creating vaccines that block adhesion events. Arguably, the use of commensal bacteria (also referred to as "normal flora", "indigenous" or "autochthonous" microorganisms) to inhibit pathogens has even greater potential than vaccine use, because these bacteria are natural competitors of pathogens and their action does not require host immune stimulation. Exogenous application of commensal organisms (probiotics) has been shown to reduce the risk of infections in the gut, urogenital tract and wound sites. To manipulate and optimize these effects, further studies are required to understand cell signaling amongst commensals and pathogens within biofilms adherent to host tissues. The potential for new therapeutic regimens using probiotics is significant and worthy of further study.  相似文献   

8.
Our perception that host-bacterial interactions lead to disease comes from rare, unsuccessful interactions resulting in the development of detectable symptoms. In contrast, the majority of host-bacterial interactions go unnoticed as the host and bacteria perceive each other to be no threat. In July 2004, a focused international symposium on epithelial-bacterial pathogen interactions was held in Newcastle upon Tyne (UK). The symposium concentrated on recent advances in our understanding of bacterial interactions at respiratory and gastrointestinal mucosal epithelial layers. For the host these epithelial tissues represent a first line of defence against invading bacterial pathogens. Through the discovery that the innate immune system plays a pivotal role during host-bacterial interactions, it has become clear that epithelia are being utilized by the host to monitor or communicate with both pathogenic and commensal bacteria. Interest in understanding the bacterial perspective of these interactions has lead researchers to realize that the bacteria utilize the same factors associated with disease to establish successful long-term interactions. Here we discuss several common themes and concepts that emerged from recent studies that have allowed physiologists and microbiologists to interact at a common interface similar to their counterparts -- epithelia and bacterial pathogens. These studies highlight the need for further multidisciplinary studies into how the host differentiates between pathogenic and commensal bacteria.  相似文献   

9.
李梦石  邹清华 《微生物学通报》2020,47(12):4269-4277
细菌的VI型分泌系统(type VI secretion system,T6SS)是一种新发现的分泌系统,在病原菌对宿主黏附、侵入及杀伤等方面均发挥了重要作用。目前的研究主要集中在T6SS在细菌致病、细菌间竞争等作用方面。然而对于其调控因素的研究尚处于初级阶段。对于大多数细菌而言,T6SS的表达并不是恒定的。现已发现温度、渗透压、抗生素、离子等环境因素均可调节T6SS。此外,在分子层面,H-NS蛋白、RpoN转录因子、c-di-GMP等也可发挥对T6SS的调节作用。在这些调控因素的调节下,细菌可以适时地开启或关闭其T6SS的表达,从而更好地感知并适应环境。对T6SS调控因素的研究对于充分认识细菌致病性并进行有效控制至关重要。本文将对调节T6SS的环境因素与调节因子做一综述。  相似文献   

10.
Intracellular pathogens replicate in modified vacuolar compartments or in the cytosol of host cells. Many pathogenic bacterial species have evolved to modify the host vacuolar environment, but little is known about the mammalian cytosol as a medium for bacterial growth. Recent studies indicate that the cytosol is restrictive for the growth of bacteria other than cytosolic pathogens in contrast to earlier research that provided evidence that any bacteria with access to the cytosol can replicate there. Comparison of these studies suggests that the cytosolic contents of various host cell types can be differentially permissive for bacterial growth, and that both host and bacterial factors are important in determining the ability of particular bacteria to replicate in the cytosol.  相似文献   

11.
刘泽  孙翔  刘晓玲  贾碧丝  刘小勇 《菌物学报》2019,38(10):1581-1599
自真菌内共生细菌在1970年被首次发现以来,各个时期的学者都采用当时流行的研究方法关注宿主真菌及其内共生细菌之间的关联现象。近年来科技手段日益多样,对二者相互作用的探索逐渐成为新的研究热点,随着研究的不断拓展和深入,越来越多的生物学现象和原理被揭示。本文在真菌内共生细菌的研究方法、定殖位置、形态、分类、宿主类群、共生关联的建立、生物学功能、宿主治愈、分离和重新植入等方面进行综述,并在此基础上进行展望,以期为真菌内共生细菌的广泛深入研究提供借鉴。  相似文献   

12.
The intestine is colonised by a vast population of resident bacteria which have established mutualistic relationships with their host throughout evolution, progressing from commensalism to symbiotic interactions. Intestinal bacteria benefit from resources available in their host, but reciprocally provide advantages to their host, by supplying enzymatic activities not encoded in the host genome, by promoting maturation of the intestine and of the gut associated immune system as well as by modifying the host metabolism. The commensal bacteria, although deprived of pathogenic attributes, might however become a danger for the host in case of translocation, acquisition of pathogenic features or via the inappropriate activation of intestinal inflammation. Remarkably, the commensal flora promotes the onset of innate and adaptive immune defences which, in turn, allow to set up a subtle balance between the host and the flora that promotes the symbiosis.  相似文献   

13.
Neisseria meningitidis (Nm) is a human specific opportunistic pathogen that occasionally penetrates mucosal barriers via the action of adhesins and invasins and evades host immune mechanisms during further dissemination via capsule expression. From in vitro studies, the primary adhesion of capsulate bacteria is believed to be mediated by polymeric pili, followed by invasion via outer membrane adhesins such as Opa proteins. As the latter requires the surface capsule to be down-modulated, invading bacteria would be serum sensitive and thus avirulent. However, there is recent evidence that capsulate bacteria may interact via Opa proteins when host cells express high levels of carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), their target receptors. Such a situation may arise following increased circulation of inflammatory cytokines that upregulate certain adhesion molecules on host cells. In this study, using a tetracycline controlled expression system, we have developed cell lines with inducible CEACAM expression to mimic post-inflammation state of target tissues and analysed the interplay between the three surface components capsule, pili and Opa proteins in cellular interactions. With two distinct cell lines, not only the level but also the rate of adhesion of capsulate Opa-expressing Nm increased concurrently with CEACAM density. Moreover, when threshold levels of receptor were reached, cellular invasion ensued in an Opa-dependent manner. In studies with cell lines intrinsically expressing pilus receptors, notable synergism in cellular interactions between pili and Opa of several meningococcal strains was observed and was independent of capsule type. A number of internalized bacteria were shown to express capsule and when directly isolated from host cells, these bacteria were as serum resistant as the inoculated phenotype. Furthermore, we observed that agents that block Opa-CEACAM binding substantially reduced cellular invasion, while maintaining a low level of cellular adhesion. These studies highlight some of the factors that may determine increased host susceptibility to infection by serum resistant phenotypes; and demonstrate the potential of selective inhibition of key interactions in preventing target tissue penetration while maintaining a level of colonization.  相似文献   

14.
针对噬菌体的细菌宿主范围预测对于深入理解噬菌体及将其作为抗生素替代用于生物疗法具有重要意义。传统生物实验方法确定噬菌体的细菌宿主范围受到极有限的噬菌体可培养性和严苛的培养条件限制,而高通量测序技术所提供的海量基因组或宏基因组序列提供了噬菌体及细菌重要的序列信息,因此智能计算为预测噬菌体的细菌宿主范围提供了可行方法。本文从智能计算的角度对噬菌体的细菌宿主范围预测研究进行系统梳理,从噬菌体感染细菌的过程入手,描述配对预测模型所依赖的特征及其生物合理性,归纳宿主范围预测的智能模型、建模原理及预测策略,总结建模训练和评估所依赖的参考数据集与真实数据及评价指标。本文特别注意挖掘和分析各信息手段、模型、方法其背后的生物合理性及其依赖的生物机理。本综述期望推动基于智能算法的噬菌体的细菌宿主范围预测研究发展,并探索将生物先验结合人工智能实现噬菌体侵袭细菌宿主的本质机理推断,同时也为基于噬菌体的临床应用提供参考与借鉴。  相似文献   

15.
Bacterial pathogens either hide from or modulate the host's immune response to ensure their survival. Photorhabdus is a potent insect pathogenic bacterium that uses entomopathogenic nematodes as vectors in a system that represents a useful tool for probing the molecular basis of immunity. During the course of infection, Photorhabdus multiplies rapidly within the insect, producing a range of toxins that inhibit phagocytosis of the invading bacteria and eventually kill the insect host. Photorhabdus bacteria have recently been established as a tool for investigating immune recognition and defense mechanisms in model hosts such as Manduca and Drosophila. Such studies pave the way for investigations of gene interactions between pathogen virulence factors and host immune genes, which ultimately could lead to an understanding of how some Photorhabdus species have made the leap to becoming human pathogens.  相似文献   

16.
Probiotic and other functional microbes: from markets to mechanisms   总被引:14,自引:0,他引:14  
Insight into the diversity and function of the human intestinal microbiota has been stimulated by clinical studies with bacteria that exhibit specific functions and which are marketed as probiotics to positively affect our health. Initial efforts concentrated on establishing sound scientific support for the efficacy of these probiotic bacteria, which mainly include Lactobacillus and Bifidobacterium species. Following these evidence-based functional approaches, considerable research is now focused on the mechanisms of action of probiotic bacteria. The mechanisms identified to date mainly relate to the stimulation of host defence systems, immune modulation and the competitive exclusion of pathogens. Recent efficacy, molecular and genomics-based studies have also been reported for some probiotic strains that have found their position in the market place.  相似文献   

17.
Bacterial invasion of eukaryotic cells and host recognition and killing of the invading bacteria are a key issue in determining the fate of bacterial infection. Once inside host cells, pathogenic bacteria often modify the phagosomal compartment or enter the host cytosol to escape from the lytic compartment and gain a replicative niche. Cytosolic invaders, however, are monitored by host innate immune systems, such as mediated by Nod/CARD family proteins, which induce inflammatory responses via activation of NF-kappaB. Furthermore, recent studies indicate that autophagy, a major cytoplasmic degradation system that eliminates cytosolic protein and organelles, also recognizes invading bacteria. Indeed, unless they are able to circumvent entrapping by autophagic membranes, bacteria targeted by autophagy ultimately undergo degradation by delivery into autolysosomes. In this article, we review recent advances in understanding of Shigella strategies to infect epithelial cells, and then focus on recent studies of an intriguing bacterial survival strategy against autophagic degradation.  相似文献   

18.
Just as we thought that we know everything about superantigens, new molecular and structural studies indicate that we have only just begun to unravel the secrets of these fascinating molecules. Recent structure-function analysis of superantigens from Gram-positive bacteria, with emphasis on their interaction with major histocompatibility complex molecules, could help us decipher the role of superantigens in disease, identify host factors that potentiate their effects and design drugs that specifically block their activity.  相似文献   

19.
Throughout their evolutionary history, insects have formed multiple relationships with bacteria. Although many of these bacteria are pathogenic, with deleterious effects on the fitness of infected insects, there are also numerous examples of symbiotic bacteria that are harmless or even beneficial to their insect host. Symbiotic bacteria that form obligate or facultative associations with insects and that are located intracellularly in the host insect are known as endosymbionts. Endosymbiosis can be a strong driving force for evolution when the acquisition and maintenance of a microorganism by the insect host results in the formation of novel structures or changes in physiology and metabolism. The complex evolutionary dynamics of vertically transmitted symbiotic bacteria have led to distinctive symbiont genome characteristics that have profound effects on the phenotype of the host insect. Symbiotic bacteria are key players in insect–plant interactions influencing many aspects of insect ecology and playing a key role in shaping the diversification of many insect groups. In this review, we discuss the role of endosymbionts in manipulating insect herbivore trophic interactions focussing on their impact on plant utilisation patterns and parasitoid biology.  相似文献   

20.
A major goal in microbiology is to understand the processes by which bacteria successfully colonize host tissue. Although a wealth of studies focusing on pathogenic microorganisms has revealed much about the rare interactions that result in disease, far less is known about the regulation of the ubiquitous, long-term, cooperative associations of bacteria with their animal hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号