首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified a new gene encoding the G protein alpha subunit, gna-3, from the filamentous fungus Neurospora crassa. The predicted amino acid sequence of GNA-3 is most similar to the Galpha proteins MOD-D, MAGA, and CPG-2 from the saprophytic fungus Podospora anserina and the pathogenic fungi Magnaporthe grisea and Cryphonectria parasitica, respectively. Deletion of gna-3 leads to shorter aerial hyphae and premature, dense conidiation during growth on solid medium or in standing liquid cultures and to inappropriate conidiation in submerged culture. The conidiation and aerial hypha defects of the Deltagna-3 strain are similar to those of a previously characterized adenylyl cyclase mutant, cr-1. Supplementation with cyclic AMP (cAMP) restores wild-type morphology to Deltagna-3 strains in standing liquid cultures. Solid medium augmented with exogenous cAMP suppresses the premature conidiation defect, but aerial hypha formation is still reduced. Submerged-culture conidiation is refractory to cAMP but is suppressed by peptone. In addition, Deltagna-3 submerged cultures express the glucose-repressible gene, qa-2, to levels greatly exceeding those observed in the wild type under carbon-starved conditions. Deltagna-3 strains exhibit reduced fertility in homozygous crosses during the sexual cycle; exogenous cAMP has no effect on this phenotype. Intracellular steady-state cAMP levels of Deltagna-3 strains are decreased 90% relative to the wild type under a variety of growth conditions. Reduced intracellular cAMP levels in the Deltagna-3 strain correlate with lower adenylyl cyclase activity and protein levels. These results demonstrate that GNA-3 modulates conidiation and adenylyl cyclase levels in N. crassa.  相似文献   

2.
Heterotrimeric G proteins are critical regulators of growth and asexual and sexual development in the filamentous fungus Neurospora crassa. Three Gα subunits (GNA-1, GNA-2, and GNA-3), one Gβ subunit (GNB-1), and one Gγ subunit (GNG-1) have been functionally characterized, but genetic epistasis relationships between Gβ and Gα subunit genes have not been determined. Physical association between GNB-1 and FLAG-tagged GNG-1 has been previously demonstrated by coimmunoprecipitation, but knowledge of the Gα binding partners for the Gβγ dimer is currently lacking. In this study, the three N. crassa Gα subunits are analyzed for genetic epistasis with gnb-1 and for physical interaction with the Gβγ dimer. We created double mutants lacking one Gα gene and gnb-1 and introduced constitutively active, GTPase-deficient alleles for each Gα gene into the Δgnb-1 background. Genetic analysis revealed that gna-3 is epistatic to gnb-1 with regard to negative control of submerged conidiation. gnb-1 is epistatic to gna-2 and gna-3 for aerial hyphal height, while gnb-1 appears to act upstream of gna-1 and gna-2 during aerial conidiation. None of the activated Gα alleles restored female fertility to Δgnb-1 mutants, and the gna-3Q208L allele inhibited formation of female reproductive structures, consistent with a need for Gα proteins to cycle through the inactive GDP-bound form for these processes. Coimmunoprecipitation experiments using extracts from the gng-1-FLAG strain demonstrated that the three Gα proteins interact with the Gβγ dimer. The finding that the Gβγ dimer interacts with all three Gα proteins is supported by epistasis between gnb-1 and gna-1, gna-2, and gna-3 for at least one function.  相似文献   

3.
Heterotrimeric G protein signaling is essential for normal hyphal growth in the filamentous fungus Neurospora crassa. We have previously demonstrated that the non-receptor guanine nucleotide exchange factor RIC8 acts upstream of the Gα proteins GNA-1 and GNA-3 to regulate hyphal extension. Here we demonstrate that regulation of hyphal extension results at least in part, from an important role in control of asexual spore (conidia) germination. Loss of GNA-3 leads to a drastic reduction in conidial germination, which is exacerbated in the absence of GNA-1. Mutation of RIC8 leads to a reduction in germination similar to that in the Δgna-1, Δgna-3 double mutant, suggesting that RIC8 regulates conidial germination through both GNA-1 and GNA-3. Support for a more significant role for GNA-3 is indicated by the observation that expression of a GTPase-deficient, constitutively active gna-3 allele in the Δric8 mutant leads to a significant increase in conidial germination. Localization of the three Gα proteins during conidial germination was probed through analysis of cells expressing fluorescently tagged proteins. Functional TagRFP fusions of each of the three Gα subunits were constructed through insertion of TagRFP in a conserved loop region of the Gα subunits. The results demonstrated that GNA-1 localizes to the plasma membrane and vacuoles, and also to septa throughout conidial germination. GNA-2 and GNA-3 localize to both the plasma membrane and vacuoles during early germination, but are then found in intracellular vacuoles later during hyphal outgrowth.  相似文献   

4.
Kays AM  Borkovich KA 《Genetics》2004,166(3):1229-1240
Heterotrimeric G alpha proteins play a critical role in regulating growth and differentiation in filamentous fungi. No systematic analysis of functional relationships between subunits has been investigated. This study explores the relative contributions of Neurospora crassa G alpha subunits, gna-1, gna-2, and gna-3, in directing development by analyzing strains deleted for various combinations of these genes. Although viable, mutants lacking all G alpha subunits or gna-1 and gna-3 are severely restricted in apical growth, forming small colonies. These strains form little aerial hyphae during asexual development on solid medium and exhibit inappropriate sporulation in submerged cultures. Similar to all strains carrying the Delta gna-1 mutation, these mutants are female sterile. Defects attributed to gna-2 are observed only in conjunction with the loss of gna-1 or gna-3, suggesting a minor role for this G alpha in N. crassa biology. Results from analysis of adenylyl cyclase and epistatic studies with the cAMP-dependent protein kinase regulatory subunit (mcb) indicate separate functions for GNA-1 and GNA-3 in cAMP metabolism and additional cAMP-independent roles for GNA-1. These studies indicate that although G alpha subunits are not essential for viability in filamentous fungi, their loss results in an organism that cannot effectively forage for nutrients or undergo asexual or sexual reproduction.  相似文献   

5.
Heterotrimeric G proteins, consisting of α, β and γ subunits, mediate a variety of signaling pathways in eukaryotes. We have previously identified two genes, gna-1 and gna-2, that encode G protein α subunits in the filamentous fungus Neurospora crassa. Mutation of gna-1 results in female infertility and sensitivity to hyperosmotic media. In this study, we investigate the expression and functions of gna-2. Results from Western analysis and measurements of gna-2 promoter-lacZ fusion activity indicate that gna-2 is expressed during the vegetative and sexual cycle of N. crassa in both A and a mating types. Activating mutations predicted to abolish the GTPase activity of GNA-2 cause subtle defects in aerial hyphae formation and conidial germination. Extensive phenotypic analysis of Δgna-2 strains did not reveal abnormalities during vegetative or sexual development. In contrast, deletion of gna-2 in a Δgna-1 strain accentuates the Δgna-1 phenotypes. Δgna-1 Δgna-2 strains have a slower rate of hyphal apical extension than Δgna-1 strains on hyperosmotic media. Moreover, Δgna-1 Δgna-2 mutants have more pronounced defects in female fertility than Δgna-1 strains. We propose that gna-1 and gna-2 have overlapping functions and may constitute a gene family. This is the first report of G protein α subunits with overlapping functions in eukaryotic microbes.  相似文献   

6.
7.
A cyclic AMP (cAMP)-dependent protein kinase pathway has been shown to regulate growth, morphogenesis and virulence in filamentous fungi. However, the precise mechanisms of regulation through the pathway remain poorly understood. In Neurospora crassa, the cr-1 adenylate cyclase mutant exhibits colonial growth with short aerial hyphae bearing conidia, and the mcb mutant, a mutant of the regulatory subunit of cAMP-dependent protein kinase (PKA), shows the loss of growth polarity at the restrictive temperature. In the present study, we isolated mutants of the catalytic subunit of the PKA gene pkac-1 through the process of repeat-induced point mutation (RIP). PKA activity of the mutants obtained through RIP was undetectable. The genome sequence predicts two distinct catalytic subunit genes of PKA, named pkac-1 (NCU06240.1, AAF75276) and pkac-2 (NCU00682.1), as is the case in most filamentous fungi. The results suggest that PKAC-1 works as the major PKA in N. crassa. The phenotype of the pkac-1 mutants included colonial growth, short aerial hyphae, premature conidiation on solid medium, inappropriate conidiation in submerged culture, and increased thermotolerance. This phenotype of pkac-1 mutants resembled to that of cr-1 mutants, except that the addition of cAMP did not rescue the abnormal morphology of pkac-1 mutants. The loss of growth polarity at the restrictive temperature in the mcb mutant was suppressed by pkac-1 mutation. These results suggest that the signal transduction pathway mediated by PKAC-1 plays an important role in regulation of aerial hyphae formation, conidiation, and hyphal growth with polarity.  相似文献   

8.
Heterotrimeric (αβγ) G proteins are crucial components of eukaryotic signal transduction pathways. G-protein-coupled receptors (GPCRs) act as guanine nucleotide exchange factors (GEFs) for Gα subunits. Recently, facilitated GDP/GTP exchange by non-GPCR GEFs, such as RIC8, has emerged as an important mechanism for Gα regulation in animals. RIC8 is present in animals and filamentous fungi, such as the model eukaryote Neurospora crassa, but is absent from the genomes of baker's yeast and plants. In Neurospora, deletion of ric8 leads to profound defects in growth and asexual and sexual development, similar to those observed for a mutant lacking the Gα genes gna-1 and gna-3. In addition, constitutively activated alleles of gna-1 and gna-3 rescue many defects of Δric8 mutants. Similar to reports in Drosophila, Neurospora Δric8 strains have greatly reduced levels of G-protein subunits. Effects on cAMP signaling are suggested by low levels of adenylyl cyclase protein in Δric8 mutants and suppression of Δric8 by a mutation in the protein kinase A regulatory subunit. RIC8 acts as a GEF for GNA-1 and GNA-3 in vitro, with the strongest effect on GNA-3. Our results support a role for RIC8 in regulating GNA-1 and GNA-3 in Neurospora.  相似文献   

9.
The vegetative growth of the adenylyl cyclase-deficient mutant cr-1 (crisp), of Neurospora crassa, resembled a conidiogenic microcycle. It was demonstrated that an enzyme which is exclusively confined to conidia in wild-type strains, i.e., nicotinamide adenine dinucleotide (phosphate) glycohydrolase (NAD(P)ase; EC 3.2.2.6), was continuously released in the culture medium by the mutant. NAD(P)ase activity of agitated cr-1 cultures was much lower than that of standing cultures; nevertheless, the enzyme was actively produced immediately after agitation was stopped. Supplementation of the growth medium with cyclic AMP normalized the morphological phenotype of the cr-1 mutant and drastically reduced NAD(P)ase production. These results suggest that NAD(P)ase regulation is somehow dependent on cyclic AMP metabolism. However, the effect of the nucleotide over the enzyme does not appear to be direct, since other crisp mutants, cr-2 and cr-3, which also overproduced NAD(P)ase, were completely unresponsive to cyclic AMP. These strains possess normal adenylyl cyclase activity.  相似文献   

10.
11.
GNA-1 and GNA-2 are two G protein alpha subunits from the filamentous fungus Neurospora crassa. Loss of gna-1 leads to multiple phenotypes, while Deltagna-2 strains do not exhibit visible defects. However, Deltagna-1Deltagna-2 mutants are more affected in Deltagna-1 phenotypes. Here we report a biochemical investigation of the roles of GNA-1 and GNA-2 in cAMP metabolism. Assays of Mg2+ ATP-dependent adenylyl cyclase activity (+/-GppNHp) in extracts from submerged cultures indicated that Deltagna-2 strains were normal, whereas Deltagna-1 and Deltagna-1Deltagna-2 strains had only 10-15% the activity of the wild-type control. Levels of the Gbeta protein, GNB-1, were normal in Deltagna-1 strains, excluding altered GNB-1 production as a factor in loss of adenylyl cyclase activity. Steady-state cAMP levels in Deltagna-1 and Deltagna-1Deltagna-2 mutants were reduced relative to wild-type under conditions that result in morphological abnormalities (solid medium), while levels in submerged culture were normal. cAMP phosphodiesterase activities in submerged cultures of Deltagna-1 and/or Deltagna-2 strains were lower than in wild-type; the individual deletions were additive in decreasing activity. These results suggest that in submerged culture, N. crassa, like mammalian systems, possesses compensatory mechanisms that maintain cAMP at relatively constant levels. Furthermore, the finding that Mg2+ATP-dependent adenylyl cyclase activity in wild-type cell extracts could be inhibited using anti-GNA-1 IgG suggests that GNA-1 directly interacts with adenylyl cyclase in N. crassa.  相似文献   

12.
13.
Vegetative hyphal fusion (VHF) is a ubiquitous phenomenon in filamentous fungi whose biological role is poorly understood. In Neurospora crassa, the mitogen-activated protein kinase (MAPK) Mak-2 and the WW domain protein So are required for efficient VHF. A MAPK orthologous to Mak-2, Fmk1, was previously shown to be essential for root penetration and pathogenicity of the vascular wilt fungus Fusarium oxysporum. Here we took a genetic approach to test two hypotheses, that (i) VHF and plant infection have signaling mechanisms in common and (ii) VHF is required for efficient plant infection. F. oxysporum mutants lacking either Fmk1 or Fso1, an orthologue of N. crassa So, were impaired in the fusion of vegetative hyphae and microconidial germ tubes. Δfmk1 Δfso1 double mutants exhibited a more severe fusion phenotype than either single mutant, indicating that the two components function in distinct pathways. Both Δfso1 and Δfmk1 strains were impaired in the formation of hyphal networks on the root surface, a process associated with extensive VHF. The Δfso1 mutants exhibited slightly reduced virulence in tomato fruit infection assays but, in contrast to Δfmk1 strains, were still able to perform functions associated with invasive growth, such as secretion of pectinolytic enzymes or penetration of cellophane sheets, and to infect tomato plants. Thus, although VHF per se is not essential for plant infection, both processes have some signaling components in common, suggesting an evolutionary relationship between the underlying cellular mechanisms.  相似文献   

14.
Autophagy is the major cellular pathway for bulk degradation of cytosolic material and is required to maintain viability under starvation conditions. To determine the contribution of autophagy to starvation stress responses in the filamentous fungus Aspergillus fumigatus, we disrupted the A. fumigatus atg1 gene, encoding a serine/threonine kinase required for autophagy. The ΔAfatg1 mutant showed abnormal conidiophore development and reduced conidiation, but the defect could be bypassed by increasing the nitrogen content of the medium. When transferred to starvation medium, wild-type hyphae were able to undergo a limited amount of growth, resulting in radial expansion of the colony. In contrast, the ΔAfatg1 mutant was unable to grow under these conditions. However, supplementation of the medium with metal ions rescued the ability of the ΔAfatg1 mutant to grow in the absence of a carbon or nitrogen source. Depleting the medium of cations by using EDTA was sufficient to induce autophagy in wild-type A. fumigatus, even in the presence of abundant carbon and nitrogen, and the ΔAfatg1 mutant was severely growth impaired under these conditions. These findings establish a role for autophagy in the recycling of internal nitrogen sources to support conidiophore development and suggest that autophagy also contributes to the recycling of essential metal ions to sustain hyphal growth when exogenous nutrients are scarce.  相似文献   

15.
16.
Cell–cell fusion is essential for a variety of developmental steps in many eukaryotic organisms, during both fertilization and vegetative cell growth. Although the molecular mechanisms associated with intracellular membrane fusion are well characterized, the molecular mechanisms of plasma membrane merger between cells are poorly understood. In the filamentous fungus Neurospora crassa, cell fusion events occur during both vegetative and sexual stages of its life cycle, thus making it an attractive model for studying the molecular basis of cell fusion during vegetative growth vs. sexual reproduction. In the unicellular yeast Saccharomyces cerevisiae, one of the few proteins implicated in plasma membrane merger during mating is Prm1p; prm1Δ mutants show an ~50% reduction in mating cell fusion. Here we report on the role of the PRM1 homolog in N. crassa. N. crassa strains with deletions of a Prm1-like gene (Prm1) showed an ~50% reduction in both vegetative and sexual cell fusion events, suggesting that PRM1 is part of the general cell fusion machinery. However, unlike S. cerevisiae, N. crassa strains carrying a Prm1 deletion exhibited complete sterility as either a male or female mating partner, a phenotype that was not complemented in a heterokaryon with wild type (WT). Crosses with ΔPrm1 strains were blocked early in sexual development, well before development of ascogenous hyphae. The ΔPrm1 sexual defect in N. crassa was not suppressed by mutations in Sad-1, which is required for meiotic silencing of unpaired DNA (MSUD). However, mutations in Sad-1 increased the number of progeny obtained in crosses with a ΔPrm1 (Prm1-gfp) complemented strain. These data indicate multiple roles for PRM1 during sexual development.  相似文献   

17.
We report engineering Neurospora crassa to improve the yield of cellobiose and cellobionate from cellulose. A previously engineered strain of N. crassa (F5) with six of seven β-glucosidase (bgl) genes knocked out was shown to produce cellobiose and cellobionate directly from cellulose without the addition of exogenous cellulases. In this study, the F5 strain was further modified to improve the yield of cellobiose and cellobionate from cellulose by increasing cellulase production and decreasing product consumption. The effects of two catabolite repression genes, cre-1 and ace-1, on cellulase production were investigated. The F5 Δace-1 mutant showed no improvement over the wild type. The F5 Δcre-1 and F5 Δace-1 Δcre-1 strains showed improved cellobiose dehydrogenase and exoglucanase expression. However, this improvement in cellulase expression did not lead to an improvement in cellobiose or cellobionate production. The cellobionate phosphorylase gene (ndvB) was deleted from the genome of F5 Δace-1 Δcre-1 to prevent the consumption of cellobiose and cellobionate. Despite a slightly reduced hydrolysis rate, the F5 Δace-1 Δcre-1 ΔndvB strain converted 75% of the cellulose consumed to the desired products, cellobiose and cellobionate, compared to 18% converted by the strain F5 Δace-1 Δcre-1.  相似文献   

18.
19.
Asexual development (conidiation) of the filamentous fungus Aspergillus nidulans occurs via balanced activities of multiple positive and negative regulators. For instance, FluG (+) and SfgA (−) govern upstream regulation of the developmental switch, and BrlA (+) and VosA (−) control the progression and completion of conidiation. To identify negative regulators of conidiation downstream of FluG-SfgA, we carried out multicopy genetic screens using sfgA deletion strains. After visually screening >100,000 colonies, we isolated 61 transformants exhibiting reduced conidiation. Responsible genes were identified as AN3152 (nsdD), AN7507, AN2009, AN1652, AN5833, and AN9141. Importantly, nsdD, a key activator of sexual reproduction, was present in 10 independent transformants. Furthermore, deletion, overexpression, and double-mutant analyses of individual genes have led to the conclusion that, of the six genes, only nsdD functions in the FluG-activated conidiation pathway. The deletion of nsdD bypassed the need for fluG and flbAflbE, but not brlA or abaA, in conidiation, and partially restored production of the mycotoxin sterigmatocystin (ST) in the ΔfluG, ΔflbA, and ΔflbB mutants, suggesting that NsdD is positioned between FLBs and BrlA in A. nidulans. Nullifying nsdD caused formation of conidiophores in liquid submerged cultures, where wild-type strains do not develop. Moreover, the removal of both nsdD and vosA resulted in even more abundant development of conidiophores in liquid submerged cultures and high-level accumulation of brlA messenger (m)RNA even at 16 hr of vegetative growth. Collectively, NsdD is a key negative regulator of conidiation and likely exerts its repressive role via downregulating brlA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号