首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The fungal allergen, Alternaria, is specifically associated with severe asthma, including life-threatening exacerbations. To better understand the acute innate airway response to Alternaria, naive wild-type (WT) mice were challenged once intranasally with Alternaria. Naive WT mice developed significant bronchoalveolar lavage eosinophilia following Alternaria challenge when analyzed 24 h later. In contrast to Alternaria, neither Aspergillus nor Candida induced bronchoalveolar lavage eosinophilia. Gene microarray analysis of airway epithelial cell brushings demonstrated that Alternaria-challenged naive WT mice had a >20-fold increase in the level of expression of found in inflammatory zone 1 (FIZZ1/Retnla), a resistin-like molecule. Lung immunostaining confirmed strong airway epithelial FIZZ1 expression as early as 3 h after a single Alternaria challenge that persisted for ≥5 d and was significantly reduced in STAT6-deficient, but not protease-activated receptor 2-deficient mice. Bone marrow chimera studies revealed that STAT6 expressed in lung cells was required for epithelial FIZZ1 expression, whereas STAT6 present in bone marrow-derived cells contributed to airway eosinophilia. Studies investigating which cells in the nonchallenged lung bind FIZZ1 demonstrated that CD45(+)CD11c(+) cells (macrophages and dendritic cells), as well as collagen-1-producing CD45(-) cells (fibroblasts), can bind to FIZZ1. Importantly, direct administration of recombinant FIZZ1 to naive WT mice led to airway eosinophilia, peribronchial fibrosis, and increased thickness of the airway epithelium. Thus, Alternaria induces STAT6-dependent acute airway eosinophilia and epithelial FIZZ1 expression that promotes airway fibrosis and epithelial thickness. This may provide some insight into the uniquely pathogenic aspects of Alternaria-associated asthma.  相似文献   

3.
Found in inflammatory zone (FIZZ) 2, also known as resistin-like molecule (RELM)-β, belongs to a novel cysteine-rich secreted protein family named FIZZ/RELM. Its function is unclear, but a closely related family member, FIZZ1, has profibrotic activities. The human ortholog of rodent FIZZ1 has not been identified, but human FIZZ2 has significant sequence homology to both rodent FIZZ2 (59%) and FIZZ1 (50%). Given the greater homology to rodent FIZZ2, analyzing the role of FIZZ2 in a rodent model of bleomycin-induced pulmonary fibrosis would be of greater potential relevance to human fibrotic lung disease. The results showed that FIZZ2 was highly induced in lungs of rodents with bleomycin-induced pulmonary fibrosis and of human patients with idiopathic pulmonary fibrosis. FIZZ2 expression was induced in rodent and human lung epithelial cells by Th2 cytokines, which was mediated via STAT6 signaling. The FIZZ2 induction in murine lungs was found to be essential for pulmonary fibrosis, as FIZZ2 deficiency significantly suppressed pulmonary fibrosis and associated enhanced extracellular matrix and cytokine gene expression. In vitro analysis indicated that FIZZ2 could stimulate type I collagen and α-smooth muscle actin expression in lung fibroblasts. Furthermore, FIZZ2 was shown to have chemoattractant activity for bone marrow (BM) cells, especially BM-derived CD11c(+) dendritic cells. Notably, lung recruitment of BM-derived cells was impaired in FIZZ2 knockout mice. These findings suggest that FIZZ2 is a Th2-associated multifunctional mediator with potentially important roles in the pathogenesis of fibrotic lung diseases.  相似文献   

4.
5.
6.
7.
In rodents and in humans, Strongyloides infection induces an immune response which is predominantly Th2 in nature. In an attempt to understand the role of the IL-4R/STAT6 signaling pathway, the pathway activated by the Th2 cytokines IL-4 and IL-13, in the induction of protection during Strongyloides venezuelensis infection, we have carried out experiments in mice lacking the IL-4Ralpha chain. Experiments were also carried out in STAT6 (STAT6(-/-)) and IL-12-deficient (IL-12(-/-)) mice for comparison. There was enhancement of IL-13 and abolition of IFN-gamma production in the small intestine of 7 day-infected IL-12(-/-) animals but worm elimination proceeded with very similar kinetics to those of wild-type mice. In IL-4Ralpha- or STAT6-deficient mice, there was a delay in parasite elimination and a large number of S. venezuelensis adult worms was still present in the small intestine 14 days after infection. Moreover, IgE production was completely abolished in IL-4Ralpha- or STAT6-deficient mice but tissue eosinophilia was normally induced by the parasite infection in deficient mice. Bone marrow transfer experiments showed that worm elimination occurred when a functional IL-4 receptor was present only in non-bone marrow-derived cells but not when IL-4R was only expressed in bone marrow cells. The induction of IL-4, but not IL-13, occurred independently of IL-4R. We believe these results are the first direct evidence that the mechanism responsible for the timely elimination of S. venezuelensis is dependent on the activation of IL-4R and STAT6. Moreover, a functional protective response is dependent on the expression of IL-4Ralpha on non-bone marrow-derived cells.  相似文献   

8.
The potent spasmogenic properties of IL-13 have identified this molecule as a potential regulator of airways hyperreactivity (AHR) in asthma. Although IL-13 is thought to primarily signal through the IL-13Ralpha1-IL-4Ralpha complex, the cellular and molecular components employed by this cytokine to induce AHR in the allergic lung have not been identified. By transferring OVA-specific CD4(+) T cells that were wild type (IL-13(+/+) T cells) or deficient in IL-13 (IL-13(-/-) T cells) to nonsensitized mice that were then challenged with OVA aerosol, we show that T cell-derived IL-13 plays a key role in regulating AHR, mucus hypersecretion, eotaxin production, and eosinophilia in the allergic lung. Moreover, IL-13(+/+) T cells induce these features (except mucus production) of allergic disease independently of the IL-4Ralpha chain. By contrast, IL-13(+/+) T cells did not induce disease in STAT6-deficient mice. This shows that IL-13 employs a novel component of the IL-13 receptor signaling system that involves STAT6, independently of the IL-4Ralpha chain, to modulate pathogenesis. We show that this novel pathway for IL-13 signaling is dependent on T cell activation in the lung and is critically linked to downstream effector pathways regulated by eotaxin and STAT6.  相似文献   

9.
10.
The role of interleukin (IL)-18 in the protection from interstitial pneumonia and pulmonary fibrosis induced by bleomycin (BLM) was investigated by comparing the severity of BLM-induced lung injuries between wild-type and C57BL/6 mice with a targeted knockout mutation of the IL-18 gene (IL-18-/- mice). IL-18-/- mice showed much worse lung injuries than wild-type mice, as assessed by the survival rate, histological images, and leukocyte infiltration in the bronchoalveolar lavage fluid and myeloperoxidase activity. In wild-type mice, administration of IL-18 before BLM instillation resulted in suppression of lung injuries, increases in the hydroxyproline content, and decreases in the granulocyte-macrophage colony-stimulating factor content in the lung. Preadministration of IL-18 also resulted in prevention of the reduction of the lung IL-10 content caused by BLM-induced damage of alveolar epithelial. BLM instillation suppressed superoxide dismutase (SOD) activity in IL-18-/- mice to a greater extent than in wild-type mice. Pretreatment of IL-18 augmented Mn-containing superoxide dismutase (Mn-SOD) messenger RNA expression and SOD activity in the lung and prevented the reduction of SOD activity caused by BLM in both wild-type and IL-18-/- mice. These results suggest that IL-18 plays a protective role against BLM-induced lung injuries by upregulating a defensive molecule, Mn-SOD.  相似文献   

11.
IL-13 is a central mediator of airway hyperresponsiveness and mucus expression, both hallmarks of asthma. IL-13 is found in the sputum of patients with asthma; therefore, IL-13 is an attractive drug target for treating asthma. We have shown previously that IL-13 inhibits Th17 cell production of IL-17A and IL-21 in vitro. Th17 cells are associated with autoimmune diseases, host immune responses, and severe asthma. In this study, we extend our in vitro findings and determine that IL-13 increases IL-10 production from Th17-polarized cells and that IL-13-induced IL-10 production negatively regulates the secretion of IL-17A and IL-21. To determine if IL-13 negatively regulates lung IL-17A expression via an IL-10-dependent mechanism in vivo, we used a model of respiratory syncytial virus (RSV) strain A2 infection in STAT1 knockout (KO) mice that increases lung IL-17A and IL-13 expression, cytokines not produced during RSV infection in wild-type mice. To test the hypothesis that IL-13 negatively regulates lung IL-17A expression, we created STAT1/IL-13 double KO (DKO) mice. We found that RSV-infected STAT1/IL-13 DKO mice had significantly greater lung IL-17A expression compared with that of STAT1 KO mice and that increased IL-17A expression was abrogated by anti-IL-10 Ab treatment. RSV-infected STAT1/IL-13 DKO mice also had increased neutrophil infiltration compared with that of RSV-infected STAT1 KO mice. Neutralizing IL-10 increased the infiltration of inflammatory cells into the lungs of STAT1 KO mice but not STAT1/IL-13 DKO mice. These findings are vital to understanding the potential side effects of therapeutics targeting IL-13. Inhibiting IL-13 may decrease IL-10 production and increase IL-17A production, thus potentiating IL-17A-associated diseases.  相似文献   

12.
Experimental Schistosoma mansoni infections of mice lead to a dynamic type 2 cytokine-mediated pathological process. We have used IL-4-deficient, IL-13-deficient, and IL-4/13-deficient mice to dissect the role of these cytokines in the development of immune response and pathology following S. mansoni infection. We demonstrate that while both of these cytokines are necessary to develop a robust Th2 cell-driven, eosinophil-rich granuloma response, they also perform disparate functions that identify novel sites for therapeutic intervention. IL-13-deficient mice demonstrated significantly enhanced survival following infection, which correlated with reduced hepatic fibrosis. In contrast, increased mortality was manifest in IL-4-deficient and IL-4/13-deficient mice, and this correlated with hepatocyte damage and intestinal pathology. Therefore, we demonstrate that during a dynamic type 2 cytokine disease process IL-13 is detrimental to survival following infection, whereas IL-4 is beneficial.  相似文献   

13.
Dual roles of IL-4 in lung injury and fibrosis   总被引:15,自引:0,他引:15  
Increased lung IL-4 expression in pulmonary fibrosis suggests a potential pathogenetic role for this cytokine. To dissect this role, bleomycin-induced pulmonary inflammation and fibrosis were analyzed and compared in wild type (IL-4(+/+)) vs IL-4-deficient (IL-4(-/-)) mice. Lethal pulmonary injury after bleomycin treatment was higher in IL-4(-/-) vs IL-4(+/+) mice. By administration of anti-CD3 Abs, we demonstrated that this early response was linked to the marked T lymphocyte lung infiltration and to the overproduction of the proinflammatory mediators such as TNF-alpha, IFN-gamma, and NO in IL-4(-/-) mice. In contrast to this early anti-inflammatory/immunosuppressive role, during later stages of fibrosis, IL-4 played a profibrotic role since IL-4(-/-) mice developed significantly less pulmonary fibrosis relative to IL-4(+/+) mice. However, IL-4 failed to directly stimulate proliferation, alpha-smooth muscle actin, and type I collagen expression in lung fibroblasts isolated from the wild-type mice. Upon appropriate stimulation with other known fibrogenic cytokines, fibroblasts from IL-4(-/-) mice were relatively deficient in the studied parameters in comparison to fibroblasts isolated from IL-4(+/+) mice. Taken together, these data suggest dual effects of IL-4 in this model of lung fibrosis: 1) limiting early recruitment of T lymphocytes, and 2) stimulation of fibrosis chronically.  相似文献   

14.
Bronchial asthma is a complex disease characterized by airway inflammation involving Th2 cytokines. Among Th2 cytokines, the significance of IL-13 in the pathogenesis of bronchial asthma has recently emerged. Particularly, the direct action of IL-13 on bronchial epithelial cells (BECs) is critical for generation of airway hyperresponsiveness. IL-13 has two binding units; the IL-13 receptor alpha1 chain transduces the IL-13 signal comprising a heterodimer with the IL-4R alpha chain, whereas the IL-13 receptor alpha2 chain (IL-13Ralpha2) is thought to act as a decoy receptor. However, it remains obscure how expression of these molecules is regulated in each cell. In this article, we analyzed the expression of these components in BECs. Either IL-4 or IL-13 induced intracellular expression of IL-13Ralpha2 in BECs, which was STAT6-dependent and required de novo protein synthesis. IL-13Ralpha2 expressed on the cell surface as a monomer inhibited the STAT6-dependent IL-13 signal. Furthermore, expression of IL-13Ralpha2 was induced in lung tissues of ovalbumin-induced asthma model mice. Taken together, our results suggested the possibility that IL-13Ralpha2 induced by its ligand is transferred to the cell surface by an unknown mechanism, and it down-regulates the IL-13 signal in BECs, which functions as a unique negative-feedback system for the cytokine signal.  相似文献   

15.
The peripheral tolerance that is elicited by the anterior chamber-associated immune deviation (ACAID) protocol is characterized by impairment of Th1 responses such as delayed-type hypersensitivity. It has been proposed that suppression of Th1 responses is mediated by a deviation toward Th2 responses. Because NKT cells have a prominent role in ACAID and NKT cell-derived IL-13 is required in a tumor model of tolerance, we postulated that NKT cell-derived Th2 cytokines might have a role in ACAID. However, contrary to the tumor model, in this study we show that NKT cells from IL-13-deficient mice or IL-4/IL-13 double deficient mice were able to reconstitute the capability of J alpha18-deficient mice (lacking invariant NKT) to develop peripheral tolerance postintracameral inoculation of Ag. Also, we were able to induce peripheral tolerance directly in IL-13-deficient, IL-4/IL-13-double deficient, and STAT6-deficient mice by inoculation of Ag into their eye. We conclude that neither IL-4 nor IL-13 cytokines are required for the generation of efferent CD8+ T regulatory cells during eye-induced peripheral tolerance. We propose that Ags inoculated into the anterior chamber of the eye induce the immunoresponse to deviate from producing immune T effector cells to producing efferent T regulatory cells, rather than deviating from Th1- to Th2-type effector cells.  相似文献   

16.
The innate immune molecule surfactant protein-D (SP-D) plays an important regulatory role in the allergic airway response. In this study, we demonstrate that mice sensitized and challenged with either Aspergillus fumigatus (Af) or OVA have increased SP-D levels in their lung. SP-D mRNA and protein levels in the lung also increased in response to either rIL-4 or rIL-13 treatment. Type II alveolar epithelial cell expression of IL-4Rs in mice sensitized and challenged with Af, and in vitro induction of SP-D mRNA and protein by IL-4 and IL-13, but not IFN-gamma, suggested a direct role of IL-4R-mediated events. The regulatory function of IL-4 and IL-13 was further supported in STAT-6-deficient mice as well as in IL-4/IL-13 double knockout mice that failed to increase SP-D production upon allergen challenge. Interestingly, addition of rSP-D significantly inhibited Af-driven Th2 cell activation in vitro whereas mice lacking SP-D had increased numbers of CD4(+) cells with elevated IL-13 and thymus- and activation-regulated chemokine levels in the lung and showed exaggerated production of IgE and IgG1 following allergic sensitization. We propose that allergen exposure induces elevation in SP-D protein levels in an IL-4/IL-13-dependent manner, which in turn, prevents further activation of sensitized T cells. This negative feedback regulatory circuit could be essential in protecting the airways from inflammatory damage after allergen inhalation.  相似文献   

17.
Chronic inflammation and proinflammatory cytokines as well as T helper type 2 (Th2) cytokines have been involved in the pathogenesis of pulmonary injury and lung fibrosis. The actual role of IL-10 in lung fibrosis is still unclear because this cytokine has been identified as Th2 but possesses strong anti-inflammatory properties. To better dissect the potential role of IL-10 in silica-induced lung fibrosis, IL-10 was overexpressed in the lung of mice by adenoviral gene transfer during the inflammatory (administered at day -1) or the fibrotic (administered at day +30) stages of the disease. Pulmonary overexpression of IL-10 during both silica-induced lung inflammation and fibrosis exacerbated the fibrotic lesions as estimated by the measurement of hydroxyproline and other biochemical and histological markers. Increased expression of IL-10 significantly enhanced the number of lung lymphocytes and bronchoalveolar lavage fluid IgG1 but not IgG2a levels, indicating the induction of a Th2-like immune response. In addition, the production of the profibrotic Th2 cytokines IL-4 and IL-13 was also significantly increased upon IL-10 overexpression. No difference in transforming growth factor-beta or PGE(2) production was noted after adenoviral IL-10 treatment of silica-treated mice. Together, these data indicate that the increased expression of IL-10 significantly contributed to silica-induced lung fibrosis by exacerbating the Th2 response and the production of the profibrotic cytokines IL-4 and IL-13.  相似文献   

18.

Background

Various signals are known to participate in the pathogenesis of lung fibrosis. Our aim was to determine which signal is predominantly mobilized in the early inflammatory phase and thereafter modulates the development of lung fibrosis.

Methods

Mice received a single dose of 3 mg/kg body weight of bleomycin (BLM) and were sacrificed at designated days post-instillation (dpi). Lung homogenates and sections from mice in the early inflammatory phase were subjected to phospho-protein array analysis and immunofluorescence studies, respectively. Bronchoalveolar lavage fluid (BALF) from mice was subjected to an enzyme-linked immunosorbent assay (EIA) for interleukin (IL)-6 and evaluation of infiltrated cell populations. The effects of endogenous and exogenous IL-6 on the BLM-induced apoptotic signal in A549 cells and type 2 pneumocytes were elucidated. In addition, the effect of IL-6-neutralizing antibody on BLM-induced lung injury was evaluated.

Results

Phospho-protein array revealed that BLM induced phosphorylation of molecules downstream of the IL-6 receptor such as Stat3 and Akt in the lung at 3 dpi. At 3 dpi, immunofluorescence studies showed that signals of phospho-Stat3 and -Akt were localized in type 2 pneumocytes, and that BLM-induced IL-6-like immunoreactivity was predominantly observed in type 2 pneumocytes. Activation of caspases in BLM-treated A549 cells and type 2 pneumocytes was augmented by application of IL-6-neutralizing antibody, a PI3K inhibitor or a Stat3 inhibitor. EIA revealed that BLM-induced IL-6 in BALF was biphasic, with the first increase from 0.5 to 3 dpi followed by the second increase from 8 to 10 dpi. Blockade of the first increase of IL-6 by IL-6-neutralizing antibody enhanced apoptosis of type 2 pneumocytes and neutrophilic infiltration and markedly accelerated fibrosis in the lung. In contrast, blockade of the second increase of IL-6 by IL-6-neutralizing antibody ameliorated lung fibrosis.

Conclusions

The present study demonstrated that IL-6 could play a bidirectional role in the pathogenesis of lung fibrosis. In particular, upregulation of IL-6 at the early inflammatory stage of BLM-injured lung has antifibrotic activity through regulating the cell fate of type 2 pneumocytes in an autocrine/paracrine manner.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0261-z) contains supplementary material, which is available to authorized users.  相似文献   

19.
The role of IL-13 in respiratory syncytial virus (RSV) immunopathogenesis is incompletely described. To assess the effect of IL-13 on primary RSV infection, transgenic mice which either overexpress IL-13 in the lung (IL-13 OE) or non-transgenic littermates (IL-13 NT) were challenged intranasally with RSV. IL-13 OE mice had significantly decreased peak viral titers four days after infection compared to non-transgenic littermates. In addition, IL-13 OE mice had significantly lower RSV-induced weight loss and reduced lung IFN-gamma protein expression compared with IL-13 NT mice. In contrast, primary RSV challenge of IL-13 deficient mice resulted in a small, but statistically significant increase in viral titers on day four after infection, no difference in RSV-induced weight loss compared to wild type mice, and augmented IFN-gamma production on day 6 after infection. In STAT1-deficient (STAT1 KO) mice, where primary RSV challenge produced high levels of IL-13 production in the lungs, treatment with an IL-13 neutralizing protein resulted in greater peak viral titers both four and six days after RSV and greater RSV-induced weight loss compared to mice treated with a control protein. These results suggest that IL-13 modulates illness from RSV-infection.  相似文献   

20.
Infection with gastrointestinal nematodes exerts profound effects on both immune and physiological responses of the host. Helminth infection induces a hypercontractility of intestinal smooth muscle that is dependent on the Th2 cytokines, IL-4 and IL-13, and may contribute to worm expulsion. Protease-activated receptors (PARs) are expressed throughout the gut, and activation of PAR-1 was observed in asthma, a Th2-driven pathology. In the current study we investigated the physiologic and immunologic regulation of PAR-1 in the murine small intestine, specifically 1) the effect of PAR-1 agonists on small intestinal smooth muscle contractility, 2) the effects of Nippostrongylus brasiliensis infection on PAR-1 responses, 3) the roles of IL-13 and IL-4 in N. brasiliensis infection-induced alterations in PAR-1 responses, and 4) the STAT6 dependence of these responses. We demonstrate that PAR-1 activation induces contraction of murine intestinal smooth muscle that is enhanced during helminth infection. This hypercontractility is associated with an elevated expression of PAR-1 mRNA and protein. N. brasiliensis-induced changes in PAR-1 function and expression were seen in IL-4-deficient mice, but not in IL-13- or STAT6-deficient mice, indicating the dependence of IL-13 on the STAT6 signaling pathway independent of IL-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号