首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initiation of protein synthesis on mRNAs within eukaryotic cells is achieved either by a 5' cap-dependent mechanism or through internal initiation directed by an internal ribosome entry site (IRES). Picornavirus IRES elements, located in the 5' untranslated region (5'UTR), contain extensive secondary structure and multiple upstream AUG codons. These features can be expected to inhibit cap-dependent initiation of translation. However, we have now shown that certain mutant hepatitis C virus-like picornavirus IRES elements (from porcine teschovirus-1 and avian encephalomyelitis virus), which are unable to direct internal initiation, are not significant barriers to efficient translation of capped monocistronic mRNAs that contain these defective elements within their 5'UTRs. Moreover, the translation of these mRNAs is highly sensitive to the expression of an enterovirus 2A protease (which induces cleavage of eIF4G) and is also inhibited by hippuristanol, a specific inhibitor of eIF4A function, in contrast to their parental wild-type IRES elements. These results provide a possible basis for the evolution of viral IRES elements within the context of functional mRNAs that are translated by a cap-dependent mechanism.  相似文献   

2.
Sequence elements that can function as internal ribosome entry sites (IRES) have been identified in 5' noncoding regions of certain uncapped viral and capped cellular mRNA molecules. However, it has remained largely unknown whether IRES elements are functional when located in their natural capped mRNAs. Therefore, the polysomal association and translation of several IRES-containing cellular mRNAs was tested under conditions that severely inhibited cap-dependent translation, that is, after infection with poliovirus. It was found that several known IRES-containing mRNAs, such as BiP and c-myc, were both associated with the translation apparatus and translated in infected cells when cap-dependent translation of most host-cell mRNAs was blocked, indicating that the IRES elements were functional in their natural mRNAs. Curiously, the mRNAs that encode eukaryotic initiation factor 4GI (eIF4GI) and 4GII (eIF4GII), two proteins with high identity and similar functions in the initiation of cap-dependent translation, were both associated with polysomes in infected cells. The 5'-end sequences of eIF4GI mRNA were isolated from a cDNA expression library and shown to function as an internal ribosome entry site when placed into a dicistronic mRNA. These findings suggest that eIF4G proteins can be synthesized at times when 5' cap-dependent mRNA translation is blocked, supporting the notion that eIF4G proteins are needed in both 5' cap-independent and 5' cap-dependent translational initiation mechanisms.  相似文献   

3.
Besides regular cap-dependent translation of mRNA, eukaryotes exploit internal initiation of translation driven by internal ribosome entry sites (IRESs). It is supposed that internal initiation provides translation of cellular mRNAs under stress conditions where the cap-dependent initiation is reduced. A number of IRESs have been characterized in mammalian mRNAs, but only a few examples are known in lower eukaryotes, particularly in yeasts. Here we identified two IRESs in the thermotolerant methylotrophic yeast Hansenula polymorpha DL-1. These sites are located in 5′-untranslated regions of genes HPODL_02249 and HPODL_04025 encoding a hypothetical membrane protein and actin-binding protein, respectively. In Saccharomyces cerevisiae cells, both IRESs drive expression of a second gene of a bicistronic mRNA, as well as translation of hairpin-containing monocistronic mRNA. The possibility of spurious splicing or presence of a cryptic promoter in the IRES sequences was ruled out, indicating that expression of a second gene of a bicistronic mRNA was IRESdependent. We evaluated IRES activity of both elements and found that under normal physiological conditions its contribution to the overall translation of the respective mRNAs in yeast cells is about 0.3-0.4%. Therefore, these results suggest that the IRES-dependent translation initiation mechanism exists in Hansenula polymorpha.  相似文献   

4.
The 5′ UTR of c-myc mRNA contains an internal ribosome entry segment (IRES) and consequently, c-myc mRNAs can be translated by the alternative mechanism of internal ribosome entry. However, there is also some evidence suggesting that c-myc mRNA translation can occur via the conventional cap-dependent scanning mechanism. Using both bicistronic and monocistronic mRNAs containing the c-myc 5′ UTR, we demonstrate that both mechanisms can contribute to c-myc protein synthesis. A wide range of cell types are capable of initiating translation of c-myc by internal ribosome entry, albeit with different efficiencies. Moreover, our data suggest that the spectrum of efficiencies observed in these cell types is likely to be due to variation in the cellular concentration of non-canonical translation factors. Interestingly, the c-myc IRES is 7-fold more active than the human rhinovirus 2 (HRV2) IRES and 5-fold more active than the encephalomyocarditis virus (EMCV) IRES. However, the protein requirements for the c-myc IRES must differ significantly from these viral IRESs, since an unidentified nuclear event appears to be a pre-requisite for efficient c-myc IRES-driven initiation.  相似文献   

5.
IRES-mediated pathways to polysomes: nuclear versus cytoplasmic routes   总被引:3,自引:0,他引:3  
Eukaryotic mRNA initiates translation by cap-dependent scanning, ribosome shunting and cap-independent internal ribosome entry. Internal ribosome entry was first discovered for cytoplasmic RNA viruses but has also been identified for DNA viruses and cellular mRNAs. An internal ribosome entry site (IRES) directs internal binding of ribosomes and nucleates the formation of a translation initiation complex. Current research is aimed at identifying interactions between IRES elements and RNA-binding proteins known as ITAFs (IRES trans-acting factors). Here we compare IRES elements from cytoplasmic RNA viruses with those of cellular mRNAs and DNA viruses with nuclear mRNA synthesis, and suggest that ITAF composition and IRES function directly reflect the site of synthesis of mRNA and the history of its pathway to polysomes.  相似文献   

6.
Translation is a tightly regulated process and is predominantly controlled at the level of its initiation. Translation initiation mostly occurs in a cap-dependent manner. Under stress conditions when cap-dependent translation is hampered, internal ribosome entry sites (IRESes) allow for cap-independent translation of certain mRNAs. IRES-dependent translation is commonly regulated by RNA-interacting proteins, known as IRES trans-acting factors (ITAFs). In the present study, we found the 5′ untranslated region (UTR) of the thioredoxin-interacting protein (TXNIP) mRNA to be bound by the ITAF hnRNPA1. Upon verification of an IRES element within the 5′UTR of TXNIP, we determined additional interacting proteins, which predominantly appeared to interact with the IRES-regulatory second half of the 5′UTR. Amongst these PTB emerged as an inhibitory ITAF, whereas FBP3 and GEMIN5 appeared to contain TXNIP IRES-enhancing properties. In summary, we identified and characterized a novel IRES within the 5′UTR of TXNIP, which is regulated by the ITAFs PTB, FBP3, and GEMIN5.  相似文献   

7.
Many viral mRNAs contain a 5′-UTR RNA element called internal ribosome-entry site (IRES), which bypasses the requirement of some canonical initiation factors allowing cap-independent translation. The IRES of hepatitis-C virus drives translation by directly recruiting 40S ribosomal subunits and binds to eIF3 which plays a critical role in both cap-dependent and cap-independent translation. However, the molecular basis for eIF3 activity in either case remains enigmatic. Here we report that subunit b of the eIF3 complex directly binds to HCV IRES domain III via its N-terminal-RRM. Because eIF3b was previously shown to be involved in eIF3j binding, biological implications are discussed.  相似文献   

8.
Eukaryotic mRNAs possess a poly(A) tail that enhances translation via the (7)mGpppN cap structure or internal ribosome entry sequences (IRESs). Here we address the question of how cellular IRESs recruit the ribosome and how recruitment is augmented by the poly(A) tail. We show that the poly(A) tail enhances 48S complex assembly by the c-myc IRES. Remarkably, this process is independent of the poly(A) binding protein (PABP). Purification of native 48S initiation complexes assembled on c-myc IRES mRNAs and quantitative label-free analysis by liquid chromatography and mass spectrometry directly identify eIFs 2, 3, 4A, 4B, 4GI, and 5 as components of the c-myc IRES 48S initiation complex. Our results demonstrate for the first time that the poly(A) tail augments the initiation step of cellular IRES-driven translation and implicate a distinct subset of translation initiation factors in this process. The mechanistic distinctions from cap-dependent translation may allow specific translational control of the c-myc mRNA and possibly other cellular mRNAs that initiate translation via IRESs.  相似文献   

9.
T Ohlmann  M Rau  V M Pain    S J Morley 《The EMBO journal》1996,15(6):1371-1382
The foot and mouth disease virus, a picornavirus, encodes two forms of a cysteine proteinase (leader or L protease) that bisects the EIF4G polypeptide of the initiation factor complex eIF4F into N-terminal (Nt) and C-terminal (Ct) domains. Previously we showed that, although in vitro cleavage of the translation initiation factor, eIF4G, with L protease decreases cap-dependent translation, the cleavage products themselves may directly promote cap-dependent protein synthesis. We now demonstrate that translation of uncapped mRNAs normally exhibits a strong requirement for eIF4F. However, this dependence is abolished when eIF4G is cleaved, with the Ct domain capable of supporting translation in the absence of the Nt domain. In contrast, the efficient translation of the second cistron of bicistronic mRNAs, directed by two distinct Internal Ribosome Entry Segments (IRES), exhibits no requirement for eIF4E but is dependent upon either intact eIF4G or the Ct domain. These results demonstrate that: (i) the apparent requirement for eIF4F for internal initiation on IRES-driven mRNAs can be fulfilled by the Ct proteolytic cleavage product; (ii) when eIF4G is cleaved, the Ct domain can also support cap-independent translation of cellular mRNAs not possessing an IRES element, in the absence of eIF4E; and (iii) when eIF4G is intact, translation of cellular mRNAs, whether capped or uncapped, is strictly dependent upon eIF4E. These data complement recent work in other laboratories defining the binding sites for other initiation factors on the eIF4G molecule.  相似文献   

10.
11.
In addition to the cap-dependent mechanism, eukaryotic initiation of translation can occur by a cap-independent mechanism which directs ribosomes to defined start codons enabled by internal ribosome entry site (IRES) elements. IRES elements from poliovirus and encephalomyocarditis virus are often used to construct bi- or oligocistronic expression vectors to co-express various genes from one mRNA. We found that while cap-dependent translation initiation from bicistronic mRNAs remains comparable to monocistronic expression, internal initiation mediated by these viral IRESs is often very inefficient. Expression of bicistronic expression vectors containing the hepatitis B virus core antigen (HBcAg) together with various cytokines in the second cistron of bicistronic mRNAs gave rise to very low levels of the tested cytokines. On the other hand, the HBcAg was well expressed when positioned in the second cistron. This suggests that the arrangement of cistrons in a bicistronic setting is crucial for IRES-dependent translation of the second cistron. A systematic examination of expression of reporter cistrons from bicistronic mRNAs with respect to position was carried out. Using the dual luciferase assay system we show that the composition of reading frames on a bicistronic mRNA and the order in which they are arranged define the strength of IRES-dependent translation. Although the cellular environment and the nature of the IRES element influence translation strength the dominant determinant is the nature and the arrangement of cistrons on the mRNA.  相似文献   

12.
Internal ribosome entry sites (IRES) are utilized by a subset of cellular and viral mRNAs to initiate translation during cellular stress and virus infection when canonical cap-dependent translation is compromised. The intergenic region (IGR) IRES of the Dicistroviridae uses a streamlined mechanism in which it can directly recruit the ribosome in the absence of initiation factors and initiates translation using a non-AUG codon. A subset of IGR IRESs including that from the honey bee viruses can also direct translation of an overlapping +1 frame gene. In this study, we systematically examined cellular conditions that lead to IGR IRES-mediated 0 and +1 frame translation in Drosophila S2 cells. Towards this, a novel bicistronic reporter that exploits the 2A “stop-go” peptide was developed to allow the detection of IRES-mediated translation in vivo. Both 0 and +1 frame translation by the IGR IRES are stimulated under a number of cellular stresses and in S2 cells infected by cricket paralysis virus, demonstrating a switch from cap-dependent to IRES-dependent translation. The regulation of the IGR IRES mechanism ensures that both 0 frame viral structural proteins and +1 frame ORFx protein are optimally expressed during virus infection.  相似文献   

13.
Translation of cellular mRNAs via initiation at internal ribosome entry sites (IRESs) has received increased attention during recent years due to its emerging significance for many physiological and pathological stress conditions in eukaryotic cells. Expression of genes bearing IRES elements in their mRNAs is controlled by multiple molecular mechanisms, with IRES-mediated translation favored under conditions when cap-dependent translation is compromised. In this review, we discuss recent advances in the field and future directions that may bring us closer to understanding the complex mechanisms that guide cellular IRES-mediated expression. We present examples in which the competitive action of IRES-transacting factors (ITAFs) plays a pivotal role in IRES-mediated translation and thereby controls cell-fate decisions leading to either pro-survival stress adaptation or cell death.Key words: translation initiation, IRES, canonical initiation factors, ITAFs, stress response, eIF2, angiogenesis, mitosis, nutrient-signaling, hyperosmolar stress  相似文献   

14.
A Pacheco  JL Twiss 《PloS one》2012,7(7):e40788
Transport of neuronal mRNAs into distal nerve terminals and growth cones allows axonal processes to generate proteins autonomous from the cell body. While the mechanisms for targeting mRNAs for transport into axons has received much attention, how specificity is provided to the localized translational apparatus remains largely unknown. In other cellular systems, protein synthesis can be regulated by both cap-dependent and cap-independent mechanisms. The possibility that these mechanisms are used by axons has not been tested. Here, we have used expression constructs encoding axonally targeted bicistronic reporter mRNAs to determine if sensory axons can translate mRNAs through cap-independent mechanisms. Our data show that the well-defined IRES element of encephalomyocarditis virus (EMCV) can drive internal translational initiation of a bicistronic reporter mRNA in distal DRG axons. To test the potential for cap-independent translation of cellular mRNAs, we asked if calreticulin or grp78/BiP mRNA 5'UTRs might have IRES activity in axons. Only grp78/BiP mRNA 5'UTR showed clear IRES activity in axons when placed between the open reading frames of diffusion limited fluorescent reporters. Indeed, calreticulin's 5'UTR provided an excellent control for potential read through by ribosomes, since there was no evidence of internal initiation when this UTR was placed between reporter ORFs in a bicistronic mRNA. This study shows that axons have the capacity to translate through internal ribosome entry sites, but a simple binary choice between cap-dependent and cap-independent translation cannot explain the specificity for translation of individual mRNAs in distal axons.  相似文献   

15.
Cap-independent initiation of translation is thought to promote protein synthesis on some mRNAs during times when cap-dependent initiation is down-regulated. However, the mechanism of cap-independent initiation is poorly understood. We have previously reported the secondary structure within the yeast minimal URE2 IRES element. In this study, we sought to investigate the mechanism of internal initiation in yeast by assessing the functional role of nucleotides within the minimal URE2 IRES element, and delineating the cis-sequences that modulate levels of internal initiation using a monocistronic reporter vector. Furthermore, we compared the eIF2A sensitivity of the URE2 IRES element with some of the invasive growth IRES elements using ΔeIF2A yeast. We found that the stability of the stem–loop structure within the minimal URE2 IRES element is not a critical determinant of optimal IRES activity, and the downstream sequences that modulate URE2 IRES-mediated translation can be defined to discrete regions within the URE2 coding region. Repression of internal initiation on the URE2 minimal IRES element by eIF2A is not dependent on the stability of the secondary structure within the URE2 IRES element. Our data also indicate that eIF2A-mediated repression is not specific to the URE2 IRES element, as both the GIC1 and PAB1 IRES elements are repressed by eIF2A. These data provide valuable insights into the mRNA requirements for internal initiation in yeast, and insights into the mechanism of eIF2A-mediated suppression.  相似文献   

16.
RNA病毒翻译调控元件—内部核糖体进入位点(IRES)   总被引:1,自引:0,他引:1  
真核生物大多数蛋白质合成采用了依赖帽子结构的翻译起始方式.但一组缺乏帽子构的RNA病毒的蛋白质合成起始是依赖其5′端非翻译区(untranslated region,UTR)翻译调控的顺式作用元件——内部核糖体进入位点(internal ribosome entry site, IRES).它 们能够在一些反式作用因子的辅助下,招募核糖体小亚基到病毒mRNA的翻译起始位点.前,依赖IRES元件翻译起始的RNA病毒在哺乳动物,无脊椎动物及植物中均有发现.因此,对RNA病毒IRES元件的深入研究,不仅有助于阐明相关疾病的发生机理,而且为工业应用和疾病治疗提供借鉴意义.本文对RNA病毒IRES元件发现、分类、结构与功能等作了综述.  相似文献   

17.
18.
蛋白质翻译起始通常有两种机制,一是依赖帽结构的翻译,另一种是依赖5′非翻译区的内部核糖体进入位点(IRES).在后一种方式中,在某些IRES反式作用因子,如La蛋白、多聚嘧啶串结合蛋白1等的参与下,直接招募核糖体小亚基到mRNA的翻译起始位点,启始翻译.研究发现,参与细胞生长、分化、细胞周期进程、凋亡和压力调控的相关蛋白中通常含有IRES元件.基于功能,我们提出假说:转录激活因子1(ATF1)的5′-UTR可能具有IRES活性.为验证假说,首先构建了含全长ATF1 5′-UTR的双荧光素酶报告质粒|质粒转染结合报告酶活性分析显示,ATF1 5′-UTR在Bel7402、HCT-8和HEK293细胞中表现出不同的IRES活性|而此IRES活性与5′-UTR中的隐藏启动子无关.同时还发现,ATF1 5′-UTR在NIH3T3细胞中却没有IRES活性.与此结果相一致,Western印迹检测ATF1在这几种细胞系中的表达.结果显示,Bel7402、HCT 8和HEK293中ATF1蛋白质表达水平较高,而在NIH3T3中却极低. ATF1 5′-UTR的系列5′-删除突变及报告酶分析证明,ATF1 5′-UTR的完整性对其IRES活性大小发挥重要作用|其中5′端的204 bp序列对其IRES活性贡献较大. RNA-蛋白免疫共沉淀实验揭示,ATF1 5′-UTR可与La和PTBP1蛋白结合|抑制La和PTBP1蛋白质的表达,并可减低HEK293细胞中ATF1蛋白质表达水平.这些结果提示,La和PTBP1蛋白(两种ITAFs)为ATF1 5′-UTR发挥IRES活性所必需.总之,上述结果证明,ATF1 5′-UTR具有IRES活性,其活性发挥依赖与La和PTBP1蛋白的结合.上述发现为进一步研究La和PTBP1表达及亚细胞定位对ATF1 IRES调控机制的影响奠定了基础.  相似文献   

19.
A search for structurally similar cellular internal ribosome entry sites   总被引:1,自引:0,他引:1  
Internal ribosome entry sites (IRES) allow ribosomes to be recruited to mRNA in a cap-independent manner. Some viruses that impair cap-dependent translation initiation utilize IRES to ensure that the viral RNA will efficiently compete for the translation machinery. IRES are also employed for the translation of a subset of cellular messages during conditions that inhibit cap-dependent translation initiation. IRES from viruses like Hepatitis C and Classical Swine Fever virus share a similar structure/function without sharing primary sequence similarity. Of the cellular IRES structures derived so far, none were shown to share an overall structural similarity. Therefore, we undertook a genome-wide search of human 5′UTRs (untranslated regions) with an empirically derived structure of the IRES from the key inhibitor of apoptosis, X-linked inhibitor of apoptosis protein (XIAP), to identify novel IRES that share structure/function similarity. Three of the top matches identified by this search that exhibit IRES activity are the 5′UTRs of Aquaporin 4, ELG1 and NF-kappaB repressing factor (NRF). The structures of AQP4 and ELG1 IRES have limited similarity to the XIAP IRES; however, they share trans-acting factors that bind the XIAP IRES. We therefore propose that cellular IRES are not defined by overall structure, as viral IRES, but are instead dependent upon short motifs and trans-acting factors for their function.  相似文献   

20.
Was the initiation of translation in early eukaryotes IRES-driven?   总被引:1,自引:0,他引:1  
The initiation of translation in eukaryotes generally involves the recognition of a 'cap' structure at the 5' end of the mRNA. However, for some viral and cellular mRNAs, a cap-independent mechanism occurs through an mRNA structure known as the internal ribosome entry site (IRES). Here, I postulate that the first eukaryotic mRNAs were translated in a cap-independent, IRES-driven manner that was then superseded in evolution by the cap-dependent mechanism, rather than vice versa. This hypothesis is supported by the following observations: (i) IRES-dependent, but not cap-dependent, translation can take place in the absence of not only a cap, but also many initiation factors; (ii) eukaryotic initiation factor 4E (eIF4E) and eIF4G, molecules absolutely required for cap-dependent translation, are among the most recently evolved translation factors; and (iii) functional similarities suggest the evolution of IRESs from spliceosomal introns. Thus, the contemporary cellular IRESs might be relics of the past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号