首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of an N-terminal peptide (amino acids 1-38) of Fugu parathyroid hormone-related protein (PTHrP 1-38) on calcium regulation of larval sea bream were investigated in seawater (36 per thousand) and after transfer to dilute seawater (12 per thousand). Exposure to PTHrP 1-38 evoked a 1.5-fold increase in calcium influx in both full-strength and dilute seawater. Calcium influx in dilute seawater-adapted larvae was roughly one-half that observed in full-strength seawater controls. PTHrP 1-38 also reduced drinking of fish in seawater but, at all concentrations tested, was without effect in dilute seawater. The amount of water imbibed was 55% lower in dilute seawater than in seawater. PTHrP 1-38 exposure affected the calcium influx route: the main contribution of calcium uptake shifted from intestinal absorption to extraintestinal uptake, probably by the induction of a dose-dependent increase in branchial (active) transport. Moreover, seawater-adapted fish exposed to 1 nM and 10 mM PTHrP 1-38 experienced a 2.5-fold reduction in overall calcium efflux. Overall, the calciotropic action of PTHrP 1-38 resulted in a dose-dependent increase in net calcium balance.  相似文献   

2.
Summary The osmotic changes in haemolymph and body tissues of the ectoparasitic salmon louse,Lepeophtheirus salmonis, have been studied upon transfer from sea water (SW) to dilute sea water (37% SW), and then to fresh water (FW). The parasite shows osmoconformity in SW but hyperosmotic regulation in 37% SW regardless of whether it is attached to the salmon host or free swimming in the water. The same conclusion is reached by haemolymph Cl measurements. In FW, the osmotic tolerance and response of attached and free swimming parasites differ: Attached animals maintain steady haemolymph osmolality and Cl concentration and survive for at least 1 week, while free swimming parasites quickly become diluted and start to die within 8 h.Acclimation to 37% SW is accompanied by changes in body tissue water content and in the content of ninhydrin positive substances and specific amino acids which suggest the presence of cell volume regulation. Glycine is the dominating free amino acid in the cephalothorax tissues but alanine, proline and taurine also occur in high amounts. Lysine is found to increase significantly during FW acclimation of attached parasites. A breakdown of cell volume regulation is suggested to limit the survival of attached salmon louse in fresh water.Abbreviations FW fresh water - NPS ninhydrin positive substances - SW sea water  相似文献   

3.
In the hydrozoan Phialidium gregarium, the constitutive calcium influx of cleavage stage embryos in sea water is 1.96 +/- 0.75 x 10(-15) moles/embryo/minute. Treating embryos with 227 mM KCl in seawater briefly increases the calcium influx more than 100-fold, to 3.9 x 10(-13) mol/embryo/min. About 62% of the KCl-induced calcium influx is due to calcium flowing through voltage-sensitive calcium channels. This causes a marked intracellular calcium transient and secretion of intracellular vesicles. The other component (approximately 38%) of the calcium influx occurs via fluid phase endocytosis of the extracellular medium (detected using extracellular 3H-sucrose). KCl-treatment of 45Ca loaded embryos induces a 45Ca efflux which can reach peak fractional rates of 0.98/min, during which 55-75% (mean 66%) of the total 45Ca is lost. The KCl-induced calcium efflux is due, in part, to secretion because loaded 3H-sucrose is effluxed simultaneously. This pathway may be important for the calcium efflux necessary for long-term calcium homeostasis in cells.  相似文献   

4.
The enzyme Na(+), K(+)-ATPase was investigated in the gills of selected hyper-regulating gammarid amphipods. Gill Na(+), K(+)-ATPase was characterised with respect to the main cation and co-factor concentrations for the freshwater amphipod Gammarus pulex. The optimum cation and co-factor concentrations for maximal gill Na(+), K(+)-ATPase activity in G. pulex were 100mM Na(+), 15mM K(+), 15mM Mg(2+) and 5mM ATP, at pH 7.2. The effects of salinity acclimation on gill Na(+), K(+)-ATPase activity and haemolymph sodium concentrations was investigated in selected gammarid amphipods from different salinity environments. Maximal enzyme activity occurred in all gammarids when acclimated to the most dilute media. This maximal activity coincided with the largest sodium gradient between the haemolymph and the external media. As the haemolymph/medium sodium gradient decreased, a concomitant reduction in gill Na(+), K(+)-ATPase activity occurred. This implicates the involvement of gill Na(+), K(+)-ATPase in the active uptake of sodium from dilute media in hyper-regulating gammarids.  相似文献   

5.
The crustacean hepatopancreas is an epithelial-lined, multifunctional organ that, among other activities, regulates the flow of calcium into and out of the animal's body throughout the life cycle. Transepithelial calcium flow across this epithelial cell layer occurs by the combination of calcium channels and cation exchangers at the apical pole of the cell and by an ATP-dependent, calcium ATPase in conjunction with a calcium channel and an Na+/Ca2+ antiporter in the basolateral cell region. The roles of intracellular organelles such as mitochondria, lysosomes, and endoplasmic reticulum (ER) in transepithelial calcium transport or in transient calcium sequestration are unclear, but may be involved in transferring cytosolic calcium from one cell pole to the other. The ER membrane has a complement of ATP-dependent calcium ATPases (SERCA) and calcium channels that regulate the uptake and possible transfer of calcium through this organelle during periods of intense calcium fluxes across the epithelium as a whole. This investigation characterized the mechanisms of calcium transport by lobster hepatopancreatic ER vesicles and the effects of drugs and heavy metals on them. Kinetic constants for 45Ca2+ influx under control conditions were K(n) (m)=10.38+/-1.01 microM, J(max)=14.75+/-1.27 pmol/mg protein x sec, and n=2.53+/-0.46. The Hill coefficient for 45Ca2+ influx under control conditions, approximating 2, suggests that approximately two calcium ions were transported for each transport cycle in the absence of ATP or the inhibitors. Addition of 1 mM ATP to the incubation medium significantly (P<0.01) elevated the rate of 45Ca2+ influx at all calcium activities used and retained the sigmoidal nature of the transport relationship. The kinetic constants for 45Ca2+ influx in the presence of 1 mM ATP were K(n) (m)=12.76+/-0.91 microM, J(max)=25.46+/-1.45 pmol/mg protein x sec, and n=1.95+/-0.15. Kinetic analyses of ER 65Zn2+ influx resulted in a sigmoidal relationship between transport rate and zinc activity under control conditions (K(n) (m)=38.63+/-0.52 microM, J(max)=19.35+/-0.17 pmol/mg protein x sec, n=1.81+/-0.03). The Addition of 1 mM ATP enhanced 65Zn2+ influx at each zinc activity, but maintained the overall sigmoidal nature of the kinetic relationship. The kinetic constants for zinc influx in the presence of 1 mM ATP were K(n) (m)=34.59+/-2.31 microM, J(max)=26.09+/-1.17 pmol/mg protein x sec, and n=1.96+/-0.17. Both sigmoidal and ATP-dependent calcium and zinc influxes by ER vesicles were reduced in the presence of thapsigargin and vanadate. This investigation found that lobster hepatopancreatic ER exhibited a thapsigargin- and vanadate-inhibited, SERCA-like, calcium ATPase. This transporter displayed cooperative calcium transport kinetics (Hill coefficient, n approximately 2.0) and was inhibited by the heavy metals zinc and copper, suggesting that the metals may reduce the binding and transport of calcium when they are present in the cytosol.  相似文献   

6.
Sodium regulation was studied in fourth instar larvae of Chironomus dorsalis and Camptochironomus tentans. Both maintain a body sodium level well above that of the surrounding medium. The haemolymph contains approximately 90% of total body sodium and approximates to a single compartment freely exchanging sodium with the external medium. The anal papillae play a primary role in sodium regulation, the gut being in secondary importance. Sodium regulation in both species is comparatively insensitive to alterations in acclimatization temperature. C. dorsalis and C. tentans are capable of maintaining sodium balance in media containing 10 mumole Na and 25 mumole Na respectively. When exposed to several changes of distilled water, C. tentansis capable of reducing sodium loss by elaboration of a more dilute urine. This is apparently,supplemented by a reduction in the permeability of the body surface. Activation of sodium uptake in both species is comparatively sluggish, with influx reaching a maximum only after the loss of greater than 30% body sodium.  相似文献   

7.
The pulmonate mud‐snail Amphibola crenata is an osmoconformer in 25%‐125% sea water, its haemolymph being slightly hyperosmotic and hyperionic to the medium. It maintains its haemolymph markedly hyperosmotic in media below 25% sea water and in freshwater, in which it survives for a week or longer. On exposure to dilute or concentrated media, water which enters or leaves the tissues preferentially enters or leaves the cells. Regulation of cell volume towards initial values is accomplished within 5 days. Measurements of changes in cell volume, and of distribution of tissue water between the intracellular and extracellular compartments, in snails moved from 100% sea water into dilute or concentrated media, and in snails moved back to 100% sea water, indicate that mechanisms of cell volume regulation are minimal in ca 60–65% sea water. Changes in the concentration of tissue free amino acids are in accord with current theories of mechanisms of isosmotic intracellular regulation. The results are discussed in the light of the taxonomic, evolutionary and ecological status of Amphibola as a shore‐living, primitive, marine representative of a predominantly terrestrial and freshwater group of gastropod molluscs.  相似文献   

8.
The adults of Hemigrapsus edwardsii and Hemigrapsus crenulatus are euryhaline crabs and strong hyper-osmoregulators. Their embryos are carried externally attached to the abdominal pleopods of female crabs, where they are exposed to temporal and spatial changes in salinity associated with their intertidal and estuarine habitats. Although embryos lack the branchial and excretory organs responsible for adult osmoregulation, post-gastrula embryos were highly tolerant of exposure to hypo-osmotic sea water. Detached eggs (embryos+envelopes), of both species, at all developmental stages between gastrulation and hatching, exhibited 80-100% survival for periods up to 96 h in sea water (osmolality, 1050 mmol kg(-1)) and in dilutions to 50%, 10%, and 1%. Cleavage stages were less tolerant of dilution; H. edwardsii, <50% survived 24 h in 10% sea water; H. crenulatus <50% survived 6 h in 10% sea water. Post-gastrulation stages strongly hyper-osmoregulated but cleavage stages were hyper-osmoconformers (maintaining internal osmolality approximately 150 mmol kg(-1) above external). Osmoregulatory capacity was reduced just prior hatching, particularly in H. crenulatus, although salinity tolerance remained high. Gastrulation therefore marks a critical stage in the ontogeny of osmoregulation and salinity tolerance. Total Na+/K(+)-ATPase activity increased greatly during embryogenesis of H. crenulatus (undetectable in blastulae; gastrulae 0.31+/-0.05 pmol P(i) embryo(-1) min(-1); pre-hatching 16.4+/-1.0 pmol P(i) embryo(-1) min(-1)). Na+/K(+)-ATPase activity increased in embryos exposed to dilute sea water for 24 h implicating regulation of this transporter in a short-term acclimation response.  相似文献   

9.
The aquatic corixid Trichocorixa reticulata (Guerin-Meneville) inhabits coastal marshes, brackish water ponds and salt ponds of high salinity, suggesting the presence of well developed mechanisms for hydromineral regulation.Groups of corixids acclimated in salinities ranging from fresh water to just above 300% sea water (100‰) were analyzed for total body water content, haemolymph ionic and osmotic levels, and haemolymph free amino acids.Results indicate an excellent ability to maintain haemolymph Na+, Cl?, Mg2+ and K+ hyperosmotic to the medium at low salinities and hyposmotic at high salinities. Calcium appears to conform closely to changes in external medium, becoming hyposmotic at very high salinities (80‰).Total haemolymph osmotic pressure was well regulated, the freezing point depression varying from 0.75°C in distilled water to 1.15°C in salinities of 100‰. Total body water was maintained at approx. 75% of the total animal wet weight at all salinities tested.Free amino acids were maintained between 40–60 mM in all tests and did not appear to change with salinity.  相似文献   

10.
Induction of a sodium ion influx by progesterone in human spermatozoa   总被引:5,自引:0,他引:5  
In human spermatozoa, progesterone (P(4)) induces a depolarization of the plasma membrane, a rapid calcium (Ca(2+)) influx, and a chloride efflux. The sodium ion (Na(+)) was partly responsible for the P(4)-induced depolarizing effect but was not required for calcium influx. We used fluorescent probes for spectrofluorometry to investigate whether P(4) induced a Na(+) influx and whether voltage-operated channels were involved in Na(+) and/or Ca(2+) entries. We found that 10 microM P(4) significantly increased intracellular Na(+) concentration from 17.8 +/- 2.0 mM to 27.2 +/- 1. 6 mM (P < 0.001). Prior incubation of spermatozoa with 10 microM flunarizine, a Na(+) and Ca(2+) voltage-dependent channel blocker, inhibited the sodium influx induced by 10 microM P(4) by 84.6 +/- 15.4%. The Ca(2+) influx induced by 10 microM P(4) was also significantly inhibited in a Na(+)-containing medium by 10 microM flunarizine or 10 microM pimozide (P < 0.01). In contrast, flunarizine had no inhibitory effect on the Ca(2+) influx induced by 10 microM P(4) in spermatozoa incubated in Na(+)-depleted medium. The P(4)-promoted acrosome reaction (AR) was significantly higher when spermatozoa were incubated in Na(+)-containing medium as compared to Na(+)-depleted medium. These data demonstrate that P(4) stimulates a Na(+) influx that could be involved in the AR completion. They also suggest that voltage-dependent Na(+) and Ca(2+) channels are implicated in P(4)-mediated signaling pathway in human spermatozoa.  相似文献   

11.
Isolated posterior gills of shore crabs,Carcinus maenas, previously acclimated for at least 1 month to brackish water of 10 S, were connected with an artificial hemolymph circulation by means of thin polyethylene tubings. Gills were symmetrically perfused and bathed with 50 % sea water. Transepithelial potential differences (PDs) and fluxes of sodium between medium and blood were measured under control conditions and following reductions of PDs by means of 5 mM internal (blood side) ouabain, 0.5 mM internal and external (bathing medium) NaCN or by exhaustion of energy reserves along with a prolonged perfusion period of more than 9 h. In these experiments22Na was used as tracer. Each of the three modes of reducing transepithelial potential differences resulted in a decrease in sodium influxes from 500–1000 µmoles g–1 h–1 to 250–400 µmoles g–1 h–1. The findings suggest that sodium influx, which normally greatly exceeds efflux, was diminished by its active component. The remaining non-inhibitable influx equals efflux values. Our findings thus indicate that efflux is completely passive, while influx has — beside a passive component of efflux magnitudes — an additional active portion which is much larger than the passive component. Since ouabain is a specific inhibitor of the Na-K-ATPase, our results confirm previous findings (Siebers et al., 1985) that the basolaterally located Na-K-ATPase generates the transepithelial potential difference in the gills, which is inside negative by about 6–12 mV. Inhibition of the active portion of sodium influx by internal ouabain along with reduced PDs suggests that transepithelial PDs generated by the branchial sodium pump are the driving force for active sodium uptake in hyperregulating brackish water crabs.  相似文献   

12.
Motilin and acetylcholine (ACh) have a direct contractile effect on rabbit small intestinal smooth muscle. To explore the role of calcium influx in these contractions, we studied the effect of extracellular calcium concentration and of calcium antagonists on the response of longitudinal muscle preparations from rabbit duodenum. Motilin- (10(-7) M) and ACh- (10(-4) M)-induced contractions were abolished in Ca2+-depleted medium. ACh (10(-4) M) or motilin (10(-8) and 10(-7) M) increased the contractile response to added Ca2+ to 130 +/- 6%, 129 +/- 10% and 145 +/- 5% of the maximal response to Ca2+ added alone (10 mM in a cumulative concentration response curve). The sensitivity to Ca2+ was greater in the presence of ACh and motilin (EC50 = 1.0 and 1.1 mM Ca2+) than in the absence of any agonist (1.7 mM). In cumulative concentration response (CCR) curves for motilin and ACh, pD2'-values were 7.0 and 6.6 for diltiazem, 8.4 and 7.8 for verapamil (two calcium entry blockers), 5.6 and 5.2 for TMB-8 (an inhibitor of intracellular calcium), 5.3 and 5.2 for TFP (a calmodulin-antagonist). All CCR-curves showed metactoid-like action of the antagonistic drugs. We conclude that ACh and motilin cause calcium to enter the smooth muscle cell. They are probably operating via separate channels, and use a mechanism which differs from K+-induced influx. Intracellular calcium stores appear to play a minor role in these contractions.  相似文献   

13.
The aim of the present study was to evaluate the sweat loss response during short-term heat acclimation in tropical natives. Six healthy young male subjects, inhabitants of a tropical region, were heat acclimated by means of nine days of one-hour heat-exercise treatments (40+/-0 degrees C and 32+/-1% relative humidity; 50% (.)VO(2peak) on a cycle ergometer). On days 1 to 9 of heat acclimation whole-body sweat loss was calculated by body weight variation corrected for body surface area. On days 1 and 9 rectal temperature (T(re)) and heart rate (HR) were measured continuously, and rating of perceived exertion (RPE) every 4 minutes. Heat acclimation was confirmed by reduced HR (day 1 rest: 77+/-5 b.min(-1); day 9 rest: 68+/-3 b.min(-1); day 1 final exercise: 161+/-15 b.min(-1); day 9 final exercise: 145+/-11 b.min(-1), p<0.05), RPE (13 vs. 11, p<0.05) and T(re) (day 1 rest: 37.2+/-0.2 degrees C; day 9 rest: 37.0+/-0.2 degrees C; day 1 final exercise: 38.2+/-0.2 degrees C; day 9 final exercise: 37.9+/-0.1 degrees C, p<0.05). The main finding was that whole-body sweat loss increased in days 5 and 7 (9.49+/-1.84 and 9.56+/-1.86 g.m(-2).min(-1), respectively) compared to day 1 (8.31+/-1.31 g.m(-2).min(-1), p<0.05) and was not different in day 9 (8.48+/-1.02 g.m(-2).min(-1)) compared to day 1 (p>0.05) of the protocol. These findings are consistent with the heat acclimation induced adaptations and suggest a biphasic sweat response (an increase in the sweat rate in the middle of the protocol followed by return to initial values by the end of it) during short-term heat acclimation in tropical natives.  相似文献   

14.
The characteristics of angiotensin II-, K+-, and adrenocorticotropin (ACTH)-induced calcium influx were studied in isolated adrenal glomerulosa cells. Basal calcium influx rate is 0.64 +/- 0.09 nmol/min/mg of protein. Addition of angiotensin II (1 nM) causes a rapid 230% increase in calcium influx rate. This angiotensin II-induced calcium influx is sustained and is rapidly reversed by angiotensin II antagonist, [Sar1,Ala8]angiotensin II. Addition of either K+ or ACTH (1 nM) causes a 340 or 160% increase, respectively, in the rate of calcium influx. The effect of either angiotensin II, K+, or ACTH on calcium influx is dependent on extracellular calcium. The apparent Km for calcium is 0.46, 0.35, and 0.32 mM, respectively. When the extracellular concentration of K+ is 2 mM, neither angiotensin II nor ACTH stimulates calcium influx. Conversely, when extracellular K+ is increased to 6 mM, both angiotensin II and ACTH cause a greater stimulation of calcium influx than at 4 mM K+. When extracellular K+ is increased to 10 mM, calcium influx is 360% of the basal influx seen at 4 mM K+, and neither angiotensin II nor ACTH further stimulates the influx rate. Nitrendipine (1 microM) blocks both angiotensin II- and K+-induced calcium influx completely. In contrast, 10 microM nitrendipine does not completely block ACTH-induced calcium influx. The calcium channel agonist, BAY K 8644, also stimulates calcium influx; 10 nM BAY K 8644 leads to a rate of calcium influx which is 185% of basal. This BAY K 8644-induced increase in calcium influx and that caused by either angiotensin II or ACTH are additive. In contrast, BAY K 8644 has more than an additive effect on the calcium influx when paired with 6 mM K+. These results suggest that angiotensin II, K+, and ACTH stimulate calcium influx via a common calcium channel but act by different mechanisms to alter its function.  相似文献   

15.
The role of calcium and sodium in stimulating phosphoinositide hydrolysis in brain was investigated in rat cerebral cortical synaptoneurosomes. In buffer containing 136 mM sodium and various concentrations of added calcium (0-1.0 mM), basal, potassium-stimulated, and norepinephrine-stimulated formation of 3H-inositol phosphates decreased with decreasing extracellular calcium. Potassium- and norepinephrine-stimulated formation of 3H-inositol phosphates was reduced to basal levels by addition of EGTA. Isosmotically replacing sodium with choline chloride or N-methyl-D-glucamine to disrupt Na+/Ca2+ exchange resulted in a large increase in the formation of 3H-inositol phosphates. Measurement of cytosolic calcium with fura-2 revealed that the cytosolic calcium concentration was sensitive to changes in the extracellular calcium concentration and increased on resuspension of synaptoneurosomes in sodium-free rather than sodium-containing medium. In the absence of sodium, potassium-stimulated formation of 3H-inositol phosphates was reduced or eliminated, depending on the extracellular calcium concentration. Subtraction of basal formation of 3H-inositol phosphates from that in the presence of 1 mM carbachol or 100 microM norepinephrine revealed that the carbachol-stimulated component was the same in the presence and absence of sodium, whereas the norepinephrine-stimulated component was reduced in the absence of sodium. Addition of the protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate inhibited norepinephrine- and, to a lesser extent, carbachol but not basal or aluminum fluoride-stimulated formation of 3H-inositol phosphates in sodium-free medium. These results suggest that an increase in intracellular calcium, via disruption of Na+/Ca2+ exchange or depolarization-induced calcium influx, may explain previous demonstrations that agents that stimulate Na+ influx can also stimulate phosphoinositide hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Calcium fluxes and calcium buffering in human neutrophils   总被引:11,自引:0,他引:11  
Neutrophils loaded with the calcium indicator quin-2 and challenged with the ionophore ionomycin or the chemotactic peptide fMet-Leu-Phe were examined in the light of a theory that relates time-dependent changes in the fluorescence of the indicator to cytosolic calcium fluxes and levels. The cytosolic binding capacity was estimated from the theory to be 1.5 +/- 0.6 X 10(8) sites/cell (0.76 mM based on a cell volume of 330 micron 3, irrespective of water content and the distribution of sites), each site having an apparent average single class dissociation constant of 0.55 +/- 0.2 microM. Some 20% of the total available cytosolic calcium sites of the normal resting cell appear to be occupied when no quin-2 is present. In a calcium-free medium, the amount of calcium released by fMet-Leu-Phe from storage pool locations that are distinct from the cytosolic sites is sufficient to further raise the cytosolic site occupancy level to 50%, at which point the calcium buffering capacity of the cytosol is maximal. In a calcium-containing medium, however, simultaneous influx from the outside appears to supply enough additional calcium to saturate most of the remaining sites. The combined initial rate of storage pool calcium release plus influx through the plasma membrane was roughly twice the initial rate at which calcium was released from storage locations alone, suggesting that stimulus-induced influx from the outside may be comparable in importance to storage pool mobilization in determining physiological calcium levels in stimulated cells.  相似文献   

17.
Intracellular free calcium concentration [( Ca2+]1) was measured in suspensions of fura-2 loaded smooth-muscle cells isolated from the anterior byssus retractor muscle of Mytilus edulis. Successive application of 5mM carbachol (CCh) and 100mM KCl to the cells transiently elevated [Ca2+]1 from the resting value of 124 +/- 4.5nM (mean +/- S.E., n = 14) to 295 +/- 15.3 and 383 +/- 20.5 nM, respectively. The response to CCh was concentration-dependent with an ED50 of 10(-5) M. Under the microscope, 67 +/- 3.0 and 83 +/- 1.3 % of fura-2 loaded cells contracted on the addition of 5mM CCh and 100mM KCl, respectively. In Ca2+ -free sea water, the CCh induced change in [Ca2+]1 was partially suppressed whereas that induced by KCl was completely abolished, suggesting an agonist-evoked release of stored Ca2+.  相似文献   

18.
We have assessed the activity of Na+/K+-ATPase, cAMP, free fatty acids (FFA) and metallothionein (MT) in the posterior gills of the brackish water shore crab Carcinus aestuarii during acclimation to 10 ppt dilute seawater (DSW). Following 3–18 days acclimation in DSW specific activity of Na+/K+-ATPase in native gill homogenates and partially purified membrane vesicles was progressively increased, from 1.7- to 3.9-fold. After short-term acclimation of crabs in DSW with added sucrose to make media isosmotic with the haemolymph the specific Na+/K+-ATPase activity in homogenates was not increased, relative to SW enzyme activity. Moreover, hyposmotic conditions led to depletion of cAMP in gills.In partially purified membrane vesicles isolated from posterior gills, fatty acids with compositions 16:0, 18:0, 18:1, 20:4 and 20:5 dominated in both SW- and DSW-acclimated Carcinus. During a year in which the metabolic activity of crabs was increased, the arachidonic/linoleic acids ratio (ARA/LA) for DSW-acclimated crabs was markedly increased relative to that in SW. Increased Na+ K+-ATPase activity under hyposmotic stress may be modulated at least partially by the changed proportion of fatty acids in the purified membranes of posterior gills. Long-term acclimation of shore crabs to DSW resulted in a 2.6-fold increase in cytosolic metallothionein (MT) content in posterior gills over those in SW crabs. Assuming an antioxidant role of MT associated with intracellular zinc partitioning, the observed MT induction in posterior gills may be considered an adaptive response of C. aestuarii to hyposmotic stress.  相似文献   

19.
SUMMARY. The accumulation of cadmium from an experimental medium by the freshwater amphipod Gammarus pulex is described.
Much of the uptake is internal as opposed to adsorption on the body surface, and after an apparent saturation of the exoskeleton the hepatopancreas becomes an increasingly important site of cadmium storage. The haemolymph cadmium concentration reaches a high level compared with marine crustaceans, achieving a concentration factor (ratio of internal Cd/ external Cd) of 100 after about 60 h uptake.
The cadmium uptake process is severely inhibited after exposure of experimental animals to 0.5 mM 2:4 Dinitrophenol, indicating the mediation of an active process. This fact together with the negative relationship between cadmium uptake rate and the calcium concentration of the animal suggests that cadmium accumulation by this species may be at least partially accounted for by a process of 'accidental' active cadmium uptake, with cadmium substituting for calcium on a calcium regulatory mechanism.
As yet it has not been possible to establish a true stoichiometric relationship between the two metals. Although calcium influx and cadmium uptake (influx) rates are similar over a wide range of external concentrations, calcium influx is clearly inhibited by a low external ratio of cadmium to calcium. This indicates that the relationship between the two metals is far from an equimolar one and the possibility of non-competitive inhibition of calcium influx by cadmium cannot be eliminated.  相似文献   

20.
The influence of copper on osmoregulation in the freshwater amphipod Gammarus pulex was determined from the analysis of water permeability, haemolymph sodium concentration, sodium influx and gill Na(+)/K(+) ATPase and Mg(2+) ATPase activity. Exposure to nominal copper concentrations of 100 microg l(-1) or greater caused a significant reduction in both haemolymph sodium concentration and sodium influx within 4 h. Measurements of water permeability, expressed as the half-time of exchange of body water (t(1/2)), excluded structural gill damage as the cause of this fall in haemolymph sodium. Copper at 10 microg l(-1) or above in the assay solution significantly reduced gill Na(+)/K(+) ATPase activity. In contrast gill Mg(2+) ATPase activity was markedly less affected by copper. These differences in enzyme sensitivity were considered with respect to the potential mechanisms of copper toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号