首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was designed to examine the effects of overheating on meiotic spindle morphology within in vitro matured human oocytes using a polarized light microscope (Polscope). Immature human oocytes at either germinal vesicle or metaphase I stage were cultured in vitro for 24-36 h until they reached metaphase II (M-II) stage. After maturation, oocytes at M-II stage were imaged in the living state with the Polscope at 37, 38, 39 and 40 degrees C for up to 20 min. After heating, oocytes were returned to 37 degrees C and then imaged for another 20 min at 37 degrees C. The microtubules in the spindles were quantified by their maximum retardance, which represents the amount of microtubules. Spindles were intact at 37 degrees C during 40 min of examination and their maximum retardance (1.72-1.79) did not change significantly during imaging. More microtubules were formed in the spindles heated to 38 degrees C and the maximum retardance was increased from 1.77 before heating to 1.95 at 20 min after heating. By contrast, spindles started to disassemble when the temperature was increased to 39 degrees C for 10 min (maximum retardance was reduced from 1.76 to 1.65) or 40 degrees C for 1 min (maximum retardance was reduced from 1.75 to 1.5). At the end of heating (20 min), fewer microtubules were present in the spindles and the maximum retardance was reduced to 0.8 and 0.78 in the oocytes heated to 39 degrees C and 40 degrees C, respectively. Heating to 40 degrees C also induced spindles to relocate in the cytoplasm in some oocytes. After the temperature was returned to 37 degrees C, microtubules were repolymerized to form spindles, but the spindles were not reconstituted completely compared with the spindles imaged before heating. These results indicate that spindles in human eggs are sensitive to high temperature. Moreover, maintenance of an in vitro manipulation temperature of 37 degrees C is crucial for normal spindle morphology.  相似文献   

2.
The present study was designed to investigate subcellular localization of MAD2 in rat oocytes during meiotic maturation and its relationship with kinetochores, chromosomes, and microtubules. Oocytes at germinal vesicle (GV), prometaphase I (ProM-I), metaphase I (M-I), anaphase I (A-I), telophase I (T-I), and metaphase II (M-II) were fixed and immunostained for MAD2, kinetochores, microtubules and chromosomes. The stained oocytes were examined by confocal microscopy. Some oocytes from GV to M-II stages were treated by a microtubule disassembly drug, nocodazole, or treated by a microtubule stabilizer, Taxol, before examination. Anti-MAD2 antibody was also injected into the oocytes at GV stage and the injected oocytes were cultured for 6 h for examination of chromosome alignment and spindle formation. It was found that MAD2 was at the kinetochores in the oocytes at GV and ProM-I stages. Once the oocytes reached M-I stage in which an intact spindle was formed and all chromosomes were aligned at the equator of the spindle, MAD2 disappeared. However, when oocytes from GV to M-II stages were treated by nocodazole, spindles were destroyed and MAD2 was observed in all treated oocytes. When nocodazole-treated oocytes at M-I and M-II stages were washed and cultured for spindle recovery, it was found that, once the relationship between microtubules and chromosomes was established, MAD2 disappeared in the oocytes even though some chromosomes were not aligned at the equator of the spindle. On the other hand, when oocytes were treated with Taxol, MAD2 localization was not changed and was the same as that in the control. However, immunoblotting of MAD2 indicated that MAD2 was present in the oocytes at all stages; nocodazole and Taxol treatment did not influence the quantity of MAD2 in the cytoplasm. Significantly higher proportions of anti-MAD2 antibody-injected oocytes proceeded to premature A-I stage and more oocytes had misaligned chromosomes in the spindles. The present study indicates that MAD2 is a spindle checkpoint protein in rat oocytes during meiosis. When the spindle was destroyed by nocodazole, MAD2 was reactivated in the oocytes to overlook the attachment between chromosomes and microtubules. However, in this case, MAD2 could not check unaligned chromosomes in the recovered spindles, suggesting that a normal chromosome alignment is maintained only in the oocytes without any microtubule damages during maturation.  相似文献   

3.
The present study was designed to investigate the localization of mitotic arrest deficient 1 (MAD1) in mouse oocytes during meiotic maturation and its relationship with kinetochores, chromosomes, and microtubules. Oocytes at various stages during the first meiosis were fixed and immunostained for MAD1, kinetochores, microtubules, and chromosomes. The stained oocytes were examined by confocal microscopy. Some oocytes were treated with nocodazole or Taxol before examination. The anti-MAD1 antibody was injected into the oocytes at the germinal vesicle (GV) stage for examination of chromosome alignment and spindle formation. It was found that MAD1 was present in the oocytes from the GV to prometaphase I stages around the nuclei. When the oocytes reached the metaphase I (M-I) to metaphase II (M-II) stages, MAD1 was mainly localized at the spindle poles. However, MAD1 relocated to the vicinity of the chromosomes when spindles were disassembled by nocodazole or cooling, and the relocated MAD1 moved back to the spindle poles during spindle recovery. Taxol treatment did not affect the MAD1 localization. Although anti-MAD1 antibody injection did not affect nuclear maturation, significantly higher proportions of injected oocytes had misaligned chromosomes when the oocytes reached the M-I to M-II stages. The results of the present study indicate that MAD1 is present in mouse oocytes at all stages during the first meiosis and that it participates in spindle checkpoint during meiosis. However, MAD1 could not check misaligned chromosomes during spindle recovery after the spindles were destroyed by drug or cooling, which caused some chromosomes to scatter in the oocytes.  相似文献   

4.
Meiotic spindle structure and chromosome alignment were examined after porcine oocytes were cooled at metaphase II (M II) stage. Cumulus-oocyte complexes (COCs) collected from medium size follicles were cultured in an oocyte maturation medium at 39 degrees C, 5% CO(2) in air for 44 hr. At the end of culture, oocytes were removed from cumulus cells and cooled to 24 or 4 degrees C for 5, 30, or 120 min in a solution with or without 1.5 M dimethyl sulfoxide (DMSO). After being cooled, oocytes were either fixed immediately for examination of the meiotic spindle and chromosome alignment or returned to maturation medium at 39 degrees C for 2 hr for examination of spindle recovery. Most oocytes (65-71%) cooled to 24 degrees C showed partially depolymerized spindles but 81-92% of oocytes cooled at 4 degrees C did not have a spindle after cooling for 120 min. Quicker disassembly of spindles in the oocytes was observed at 4 degrees C than at 24 degrees C. Cooling also induced chromosome abnormality, which was indicated by dispersed chromosomes in the cytoplasm. Limited spindle recovery was observed in the oocytes cooled to both 4 and 24 degrees C regardless of cooling time. The effect of cooling on the spindle organization and chromosome alignment was not influenced by the presence of DMSO. These results indicate that the meiotic spindles in porcine M II oocytes are very sensitive to a drop in the temperature. Both spindle and chromosomes were damaged during cooling, and such damage was not reversible by incubating the oocytes after they had been cooled.  相似文献   

5.
The newly developed Pol-Scope allows imaging of spindle retardance, which is an optical property of organized macromolecular structures that can be observed in living cells without fixation or staining. Experiments were undertaken to examine changes in meiotic spindles during the initial stages of activation of living mouse oocytes using the Pol-Scope. Parthenogenetic activation of oocytes treated with calcium ionophore evoked a dynamic increase in meiotic spindle retardance, particularly of the midregion, before spindle rotation and second polar body extrusion. The pronounced increase in spindle retardance, which could, for the first time to our knowledge, be quantified in living oocytes, was maintained during polar body extrusion. Spindle retardance of newly in vivo fertilized oocytes was significantly higher than that of ovulated, metaphase II oocytes. Pol-Scope imaging of fertilized oocytes did not affect subsequent development. These results establish that increased spindle retardance precedes polar body extrusion and pronuclear formation. The increased birefringence in the spindle provides an early indicator of oocyte activation. Thus, noninvasive, quantitative imaging of the onset of activation in living oocytes might improve the efficiency of assisted fertilization and other embryo technologies.  相似文献   

6.
To better understand the differences in cytoskeletal organization between in vivo (IVO) and in vitro (IVM) matured oocytes, we analyzed remodeling of the centrosome-microtubule complex in IVO and IVM mouse oocytes. Fluorescence imaging revealed dramatic differences in meiotic spindle assembly and organization between these two populations. Metaphase spindles at both meiosis I (M-I) and meiosis II (M-II) in IVO oocytes were compact, displayed focused spindle poles with distinct gamma-tubulin foci, and were composed of acetylated microtubules. In contrast, IVM oocytes exhibited barrel-shaped spindles with fewer acetylated microtubules and gamma-tubulin diffusely distributed throughout the spindle proper. With respect to meiotic progression, IVO oocytes were more synchronous in the rate and extent of anaphase to telophase of M-I and first polar body emission than were IVM counterparts. Furthermore, IVO oocytes showed a twofold increase in cytoplasmic microtubule organizing centers (MTOCs), and constitutive MTOC proteins (gamma-tubulin and pericentrin) were excluded from the first polar body. Inclusion of MTOC constitutive proteins in the polar body and diminished number of cytoplasmic MTOCs was observed in IVM oocytes. These findings were corroborated in IVO oocytes obtained from naturally ovulated and spontaneously cycling mice and highlight a fundamental distinction in the spatial and temporal regulation of microtubule dynamics between IVO and IVM oocytes  相似文献   

7.
2-Methoxyestradiol (2-ME) is a metabolite of 17beta-estradiol and a natural component of follicular fluid. Local concentrations of 2-ME may be increased by exposure to environmental pollutants that activate the expression of enzymes in the metabolic pathway from 17beta-estradiol to 2-ME. It has been suspected that this may have adverse effects on spindle formation in maturing oocytes, which would affect embryo quality. To study the dose-response patterns, we exposed denuded mouse oocytes to 2-ME during in vitro maturation. Meiotic progression, spindle morphology, centrosome integrity, and chromosome congression were examined by immunofluorescence and noninvasive polarizing microscopy (PolScope). Chromosomal constituents were assessed after spreading and C-banding. 2-ME sustained MAD2L1 expression at the centromeres and increased the number of meiosis I-blocked oocytes in a dose-dependent manner. 2-ME also caused dramatic dose-dependent increases in the hyperploidy of metaphase II oocytes. Some of these meiosis II oocytes contained anaphase I-like chromosomes, which suggests that high concentrations of the catecholestradiol interfere with the physical separation of chromosomes. Noninvasive PolScope analysis and tubulin immunofluorescence revealed that perturbations in spindle organization, which resulted in severe disturbances of the chromosome alignment at the spindle equator (congression failure), were caused by 2-ME at meiosis I and II. Pericentrin-positive centrosomes failed to align at the spindle poles, and multipolar spindles and prominent arrays of cytoplasmic microtubule asters were induced in 2-ME-exposed metaphase II oocytes. In conclusion, a micromolar level of 2-ME is aneugenic for mammalian oocytes. Therefore, exposure to 2-ME and conditions that increase the intrinsic local concentration of 2-ME in the ovary may affect fertility and increase risks for chromosomal aberrations in the oocyte and embryo.  相似文献   

8.
The meiotic spindle is crucial for normal chromosome alignment and separation of maternal chromosomes during meiosis. Conventional methods to image spindles rely on fixation and transmission electron microscope or immunofluorescence staining and fluorescence microscope, so they provide limited value to studies of spindle dynamics and human clinical in vitro fertilization. A new orientation-independent polarized light microscope, the LC Polscope, was used to examine the bi-refringent spindles in living mammalian oocytes. It was found that spindles could be imaged with the Polscope in living oocytes in all mammals so far examined, including hamster, mouse, cattle, human, and rat. The first polar body did not accurately predict the spindle location in most metaphase II oocytes. Intracytoplasmic sperm injection (ICSI) could be performed by monitoring spindle position. Studies in humans indicated that, aftr ICSI, higher fertilization and embryonic developmental rates could be achieved in oocytes with than without bi-refringent spindles. Because spindles in most mammalian oocytes are extremely sensitive to slight changes in temperature, maintenance of temperature at 37 degrees C is crucial for normal spindle function. As chromosomes#10; are usually associated with microtubule fibers in the spindles, the position of chromosomes could be indirectly located by imaging spindles. Removing spindles under the Polscope can achieve an enucleation#10; efficiency rate of 100% in mouse oocytes. The Polscope can also be used to examine the spindle dynamics, detect spindle morphology, predict chromosome misalignment, and perform spindle transfer.  相似文献   

9.
Experiments were conducted to investigate kinetics of in vitro nuclear maturation and the effect of storing ovaries at room temperature on initial chromatin configuration and in vitro maturation of dromedary camel oocytes. Cumulus oocyte complexes (COCs) were collected from slaughterhouse ovaries and matured in vitro for 4-48h. At every 4h interval (starting from 0 to 48 h), groups of oocytes were fixed, stained and evaluated for the status of nuclear chromatin. Oocytes were categorized as germinal vesicle (GV), diakinesis (DK), metaphase-I (M-I), anaphase-I (A-I), metaphase-II (M-II) stage and those with degenerated, fragmented, activated or without a visible chromatin as others. At the start of culture, 74% (66/89) oocytes were at GV stage, 13% (12/89) at DK and 12% (11/89) were classified as others. Germinal vesicle breakdown started spontaneously in culture and at 20 h of culture 97% oocytes had already completed this process. After 8 and 16 h of maturation the highest proportion of oocytes (42%, 48/114 and 41%, 51/123) were at DK and M-I stage, respectively. The proportions of oocytes reaching M-II stage at 32 (42%, 50/118), 36 (45%, 47/104), 40 (49%, 57/117), 44 (52%, 103/198) and 48 h (46%, 55/120) of culture were not different from each other (P>0.05). The proportion of oocytes categorized as others, however, increased after 40 h of culture and was higher (P<0.05) at 48 h compared with other maturation periods. There was no difference (P>0.05) in the proportion of oocytes reaching M-II stage from the ovaries collected and stored in normal saline solution (NSS) at room temperature for 12h (43%, 64/148) and those collected in warm NSS (37 degrees C) and processed immediately after arrival in laboratory (49%, 57/117). However, low number of oocytes reached M-II stage from ovaries collected in warm NSS but stored at room temperature (29%, 37/128) compared with other two groups (P<0.05). It may be concluded that dromedary oocytes require 32-44h of in vitro culture to have an optimum number of oocytes in M-II stage. However, further studies are required to find out the most appropriate maturation period, which will result in the further development of these oocytes after IVF, ICSI, parthenogenetic activation or nuclear transfer. Ovaries can be collected and stored in normal saline solution at room temperature for 12h without any appreciable effect on the nuclear maturation of the oocytes.  相似文献   

10.
E-64-d, a membrane permeant derivative of E-64, the thiol protease inhibitor, was found to prevent meiotic maturation of mouse oocytes in a dose dependent manner. When immature mouse oocytes were incubated with E-64-d for up to 14 hr, first polar body emission was blocked to 36% at 200 μg/ml and 6% at 400 μg/ml, but germinal vesicle breakdown occurred normally. Cytological analysis revealed that meiotic spindles were not formed, while chromosome condensation occurred. Thus, E-64-d prevents oocytes from progressing to the first meiotic metaphase. When exposed to E-64-d after 8 hr of incubation without E-64-d, one-fourth of oocytes completed the first meiotic division but never progressed to the second metaphase. In three-fourth of the oocytes inhibited to emit the first polar body, spindles disappeared after incubation with E-64-d. The results suggest that E-64-d promotes disassembly of meiotic spindles resulting in inhibition of meiotic maturation. We propose that thiol protease is involved in spindle formation in mouse meiotic maturation.  相似文献   

11.
Aneuploidy may result from abnormalities in the biochemical pathways and cellular organelles associated with chromosome segregation. Monastrol is a reversible, cell-permeable, non-tubulin interacting inhibitor of the mitotic kinesin Eg5 motor protein which is required for assembling and maintaining the mitotic spindle. Monastrol can also impair centrosome separation and induce monoastral spindles in mammalian somatic cells. The ability of monastrol to alter kinesin Eg5 and centrosome activities and spindle geometry may lead to abnormal chromosome segregation. Mouse oocytes were exposed to 0 (control), 15, 30, and 45 microg/ml monastrol in vitro for 6 h during meiosis I and subsequently cultured for 17 h in monastrol-free media prior to cytogenetic analysis of metaphase II oocytes. A subset of oocytes was cultured for 5 h prior to processing cells for meiotic I spindle analysis. Monastrol retarded oocyte maturation by significantly (P < 0.05) decreasing germinal vesicle breakdown and increasing the frequencies of arrested metaphase I oocytes. Also, significant (P < 0.05) increases in the frequencies of monoastral spindles and chromosome displacement from the metaphase plate were found in oocytes during meiosis I. In metaphase II oocytes, monastrol significantly (P < 0.05) increased the frequencies of premature centromere separation and aneuploidy. These findings suggest that abnormal meiotic spindle geometry predisposes oocytes to aneuploidy.  相似文献   

12.
《The Journal of cell biology》1985,101(5):1966-1976
Spindles underwent a 12-fold elongation before anaphase B was completed during the closed mitoses of micronuclei in Paramecium tetraurelia. Two main classes of spindle microtubules have been identified. A peripheral sheath of microtubules with diameters of 27-32 nm was found to be associated with the nuclear envelope and confined to the midportion of each spindle. Most of the other microtubules had diameters of approximately 24 nm and were present along the entire lengths of spindles. Nearly all of the 24-nm microtubules were eliminated from spindle midportions (largely because of microtubule disassembly) at a relatively early stage of spindle elongation. Disassembly of some of these microtubules also occurred at the ends of spindles. About 60% of the total microtubule content of spindles was lost at this stage. Most, perhaps all, peripheral sheath microtubules remained intact. Many of them detached from the nuclear envelope and regrouped to form a compact microtubule bundle in the spindle midportion. There was little, if any, further polymerization of 24-nm microtubules after the disassembly phase. Polymerization of microtubules with diameters of 27-32 nm continued as spindle elongation progressed. Most microtubules in the midportions of well-elongated spindles were constructed from 14-16 protofilaments. A few 24-nm microtubules with 13 protofilaments were also present. The implications of these findings for spatial control of microtubule assembly, disassembly, positioning, and membrane association, that apparently discriminate between microtubules with different protofilament numbers have been explored. The possibility that microtubule sliding occurs during spindle elongation has also been considered.  相似文献   

13.
Mouse oocytes at different stages of maturation were fused together and the ensuing cell cycle events were analyzed with the objective of identifying checkpoints in meiosis. Fusion of maturing oocytes just undergoing germinal vesicle breakdown (GVBD) induces PCC (premature chromosome condensation) but no spindle formation in immature (GV) partner oocytes. On the other hand, fusion of metaphase I (MI) oocytes containing spindles to GV oocytes induces both PCC and spindle formation in the immature partner. Thus, while molecules required for condensation are present throughout metaphase, those involved in spindle formation are absent in early M-phase. Oocytes cultured for 6 h—early metaphase I (i.e., 2 h before the onset of anaphase I)—and then fused to anaphase-telophase I (A-TI) fusion partners block meiotic progression in the more advanced oocytes and induce chromatin dispersal on the spindle. By contrast, oocytes cultured for 8 h (late MI) before fusion to A-TI partners are driven into anaphase by signals from the more advanced oocytes and thereafter advance in synchrony to telophase I. When early (10 h) or late (12 h) metaphase II oocytes were fused to A-TI partners the signals generated from early MII oocytes block the anaphase to telophase I transition and induce a dispersal of A-TI chromosomes along the spindle. On the other hand, late MII oocytes respond to A-TI signals by exiting from the MII block and undergoing the A-TII transition. Moreover, the oocytes in late MI are not arrested in this stage and progress without any delay through A-TI to MII when fused to metaphase II partners. The signals from the less-developed partner force the MII oocyte through A-TII to MIII. In total, these studies demonstrate that the metaphase period is divided into at least three distinct phases and that a checkpoint in late metaphase controls the progress of meiosis in mammalian oocytes.  相似文献   

14.
In many animal species the meiosis I spindle in oocytes is anastral and lacks centrosomes. Previous studies of Drosophila oocytes failed to detect the native form of the germline-specific γ-tubulin (γTub37C) in meiosis I spindles, and genetic studies have yielded conflicting data regarding the role of γTub37C in the formation of bipolar spindles at meiosis I. Our examination of living and fixed oocytes carrying either a null allele or strong missense mutation in the γtub37C gene demonstrates a role for γTub37C in the positioning of the oocyte nucleus during late prophase, as well as in the formation and maintenance of bipolar spindles in Drosophila oocytes. Prometaphase I spindles in γtub37C mutant oocytes showed wide, non-tapered spindle poles and disrupted positioning. Additionally, chromosomes failed to align properly on the spindle and showed morphological defects. The kinetochores failed to properly co-orient and often lacked proper attachments to the microtubule bundles, suggesting that γTub37C is required to stabilize kinetochore microtubule attachments in anastral spindles. Although spindle bipolarity was sometimes achieved by metaphase I in both γtub37C mutants, the resulting chromosome masses displayed highly disrupted chromosome alignment. Therefore, our data conclusively demonstrate a role for γTub37C in both the formation of the anastral meiosis I spindle and in the proper attachment of kinetochore microtubules. Finally, multispectral imaging demonstrates the presences of native γTub37C along the length of wild-type meiosis I spindles.  相似文献   

15.
Attempts to cryopreserve bovine oocytes result in low survival because of their sensitivity to temperatures near 0 degrees C. This study evaluates the effects of chilling germinal vesicle-stage (GV) oocytes on their formation of microtubules and the meiotic spindle. In experiment 1, five groups of GV-stage oocytes, each consisting of approximately 90 oocytes, were held at 39 degrees C as controls, or at 31 degrees C, or cooled to 24, 4 or 0 degrees C for 10 min. After being treated, all oocytes were cultured at 39 degrees C for 24 hr. Compared to the controls, holding oocytes for 10 min at 31 or 24 degrees C did not significantly alter the formation of normal spindles, but chilling them to 4 or 0 degrees C did. After 24 hr of maturation, the respective percentages of oocytes containing normal meiotic spindles observed in the controls or those held at 31 or 24 degrees C were 69.8%, 71.9%, or 69.4% (P > 0.05). In contrast, the percentages of oocytes with normal spindles after they had been cooled to 4 or 0 degrees C were 44.0% or 29.1%, respectively. In experiment 2, approximately 90 oocytes/group were cooled to 4 degrees C for various times before being warmed and cultured. Regardless of the time of exposure, cooling oocytes to 4 degrees C reduced the formation of normal spindles. The percentages of oocytes cooled to 4 degrees C for 10, 20, 30, 45, or 60 min with normal spindles were 44.0%, 38.4%, 37.5%, 34.5% and 30.9%, respectively. In experiment 3, approximately 60 oocytes per group that had been held at 31 degrees C or cooled to 24, 4 or 0 degrees C for 10 min were allowed to mature for 24 hr before being subjected to in vitro fertilization. The cleavage rates of oocytes subjected to various chilling treatments exhibited the same pattern as that of oocytes with normal spindles. That is, there were no significant differences in cleavage rates among the control oocytes and those held at 31 or 24 degrees C (70.4%, 71.8%, and 72.4%; P > 0.05). However, only 37. 0% and 30.4% of oocytes chilled to 4 or 0 degrees C cleaved after fertilization. These results suggest that: (1) chilling bovine oocytes no lower than 24 degrees C does not reduce formation of normal meiotic spindles; (2) however, chilling oocytes to 4 degrees C or lower for as little as 10 min drastically reduces the formation of normal meiotic spindles and of fertilization; (3) the rates of fertilization and cleavage of resultant zygotes mimic that of formation of normal spindles.  相似文献   

16.
Ipl1p is the budding yeast member of the Aurora family of protein kinases, critical regulators of genomic stability that are required for chromosome segregation, the spindle checkpoint, and cytokinesis. Using time-lapse microscopy, we found that Ipl1p also has a function in mitotic spindle disassembly that is separable from its previously identified roles. Ipl1-GFP localizes to kinetochores from G1 to metaphase, transfers to the spindle after metaphase, and accumulates at the spindle midzone late in anaphase. Ipl1p kinase activity increases at anaphase, and ipl1 mutants can stabilize fragile spindles. As the spindle disassembles, Ipl1p follows the plus ends of the depolymerizing spindle microtubules. Many Ipl1p substrates colocalize with Ipl1p to the spindle midzone, identifying additional proteins that may regulate spindle disassembly. We propose that Ipl1p regulates both the kinetochore and interpolar microtubule plus ends to regulate its various mitotic functions.  相似文献   

17.
The microtubule-associated protein ASPM (abnormal spindle-like microcephaly-associated) plays an important role in spindle organization and cell division in mitosis and meiosis in lower animals, but its function in mouse oocyte meiosis has not been investigated. In this study, we characterized the localization and expression dynamics of ASPM during mouse oocyte meiotic maturation and analyzed the effects of the downregulation of ASPM expression on meiotic spindle assembly and meiotic progression. Immunofluorescence analysis showed that ASPM localized to the entire spindle at metaphase I (MI) and metaphase II (MII), colocalizing with the spindle microtubule protein acetylated tubulin (Ac-tubulin). In taxol-treated oocytes, ASPM colocalized with Ac-tubulin on the excessively polymerized microtubule fibers of enlarged spindles and the numerous asters in the cytoplasm. Nocodazole treatment induced the gradual disassembly of microtubule fibers, during which ASPM remained colocalized with the dynamic Ac-tubulin. The downregulation of ASPM expression by a gene-specific morpholino resulted in an abnormal meiotic spindle and inhibited meiotic progression; most of the treated oocytes were blocked in the MI stage with elongated meiotic spindles. Furthermore, coimmunoprecipitation combined with mass spectrometry and western blot analysis revealed that ASPM interacted with calmodulin in MI oocytes and that these proteins colocalized at the spindle. Our results provide strong evidence that ASPM plays a critical role in meiotic spindle assembly and meiotic progression in mouse oocytes.  相似文献   

18.
Meiosis I metaphase spindles were isolated from oocytes of the sea-star Pisaster ochraceus by a method that produced no detectable net loss in spindle birefringence. Some of the spindles were fixed immediately and embedded and sectioned for electron microscopy. Others were laminated between gelatine pellicles in a perfusion chamber, then fixed and sequentially and reversibly imbibed with a series of media of increasing refractive indices. Electron microscopy showed little else besides microtubules in the isolates, and no other component present could account for the observed form birefringence. An Ambronn plot of the birefringent retardation measured during imbibition was a good least squares fit to a computer generated theoretical curve based on the Bragg-Pippard rederivation of the Wiener curve for form birefringence. The data were best fit by the curve for rodlet index (n1) = 1.512, rodlet volume fraction (f) = 0.0206, and coefficient of intrinsic birefringence = 4.7 X 10(-5). The value obtained for n1 is unequivocal and is virtually as good as the refractometer determinations of imbibing medium index on which it is based. The optically interactive volume of the microtubule subunit, calculated from our electron microscope determination of spindle microtubule distribution (106/mum2), 13 protofilaments per microtubules, an 8 nm repeat distance and our best value for f, is compatible with known subunit dimensions as determined by other means. We also report curves fitted to the results of Ambronn imbibition of Bouin's-fixed Lytechinus spindles and to the Noll and Weber muscle imbibition data.  相似文献   

19.
This study assessed the impact of various cryoprotectant (CPA) exposures on nuclear and cytoplasmic maturation in the immature cat oocyte as a prerequisite to formulating a successful cryopreservation protocol. In experiment 1, immature oocytes were exposed to 0, 0.75, 1.5, or 3.0 M of 1,2-propanediol (PrOH) or 1,2-ethanediol (EG) at room temperature (25 degrees C) or 0 degrees C for 30 min. After CPA removal and in vitro maturation, percentage of oocytes reaching metaphase II (MII) was reduced after exposure to 3.0 M PrOH at 0 degrees C or 3.0 M EG at both temperatures. All CPA exposures increased MII spindle abnormalities compared to control, except 1.5 M PrOH at 25 degrees C. In experiments 2 and 3, immature oocytes were exposed to CPA conditions yielding optimal nuclear maturation that either had caused spindle damage (0.75 M PrOH, 1.5 M EG, and 3.0 M PrOH at 25 degrees C) or not (1.5 M PrOH at 25 degrees C). After maturation and insemination in vitro, oocytes were cultured for 7 days to assess treatment influence on developmental competence. CPA exposure did not affect fertilization, but the high incidence of MII spindle abnormalities resulted in a low percentage of cleaved embryos. Blastocyst formation and quality were influenced by both CPA types (EG was more detrimental than PrOH) and concentration (3.0 M was more detrimental than 1.5 M). Overall, cat oocytes appear to be highly sensitive to CPA except after exposure to 1.5 M PrOH at 25 degrees C, a treatment that still allowed approximately 60% of the oocytes to reach MII and approximately 20% to form blastocysts.  相似文献   

20.
Alterations in the organization of the microtubular cytoskeleton and chromosome alignment were examined by tubulin immunofluorescence and DAPI staining during in vivo ageing of naturally ovulated, metaphase-arrested oocytes of CBA/Ca mice in the fallopian tubes. In oocytes isolated from young mice on the day of oestrus, a few hours after ovulation, when they are still tightly surrounded by cumulus, the anti-tubulin fluorescence is almost exclusively restricted to the metaphase spindle. Only some faintly staining foci are observed in the cytoplasm, which presumably represent cytoplasmic MTOC not involved in spindle formation. The spindle is usually barrel-shaped or slightly pointed at its poles and does not possess astral fibres. In oocytes aged for more than 12 h in the fallopian tubes cytoplasmic asters develop, while microtubules seem to become gradually lost from the spindle, preferentially in its central area near the chromosomes. Astral fibres are observed radiating out from the polar centrosomes into the cytoplasm. In oocytes free of cumulus, and consequently more than 24 h post-ovulation, a pronounced shrinking of the spindle is observed. The mean pole-to-pole distance becomes significantly reduced in postovulatory aged cells. At the same time astral microtubules in the cytoplasm appear to become gradually depolymerized. Age-dependent alterations in the microtubular cytoskeleton do not seem to result from a changed pattern of the post-translational detyrosylation of -tubulin in certain sets of microtubules. In freshly ovulated oocytes chromosomes in most spindles are well ordered and precisely arranged at the equatorial plane. In 11% of the cells only, there was dislocation of one or several of the chromosomes from the spindle equator. By contrast, 61.4% of bipolar spindles of postovulatory aged oocytes have chromosomes displaced from the centre of the spindle towards one of the spindle poles. The implications of the observed alterations in the microtubular cytoskeleton, shrinking of the spindle and increased disorder of chromosome alignment are discussed with regard to predisposition to aneuploidy and reduction of developmental potential of postovulatory aged oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号