共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Alterations in the Cytoskeleton Accompany Aluminum-Induced Growth
Inhibition and Morphological Changes in Primary Roots of
Maize 总被引:11,自引:0,他引:11
下载免费PDF全文

Although Al is one of the major factors limiting crop production, the mechanisms of toxicity remain unknown. The growth inhibition and swelling of roots associated with Al exposure suggest that the cytoskeleton may be a target of Al toxicity. Using indirect immunofluorescence microscopy, microtubules and microfilaments in maize (Zea mays L.) roots were visualized and changes in their organization and stability correlated with the symptoms of Al toxicity. Growth studies showed that the site of Al toxicity was associated with the elongation zone. Within this region, Al resulted in a reorganization of microtubules in the inner cortex. However, the orientation of microtubules in the outer cortex and epidermis remained unchanged even after chronic symptoms of toxicity were manifest. Auxin-induced reorientation and cold-induced depolymerization of microtubules in the outer cortex were blocked by Al pretreatment. These results suggest that Al increased the stability of microtubules in these cells. The stabilizing effect of Al in the outer cortex coincided with growth inhibition. Reoriented microfilaments were also observed in Al-treated roots, and Al pretreatment minimized cytochalasin B-induced microfilament fragmentation. These data show that reorganization and stabilization of the cytoskeleton are closely associated with Al toxicity in maize roots. 相似文献
13.
14.
15.
《Molecular cell》2014,53(6):993-1004
- Download : Download high-res image (290KB)
- Download : Download full-size image
16.
17.
18.
Ibrahim MA 《Genetics》1960,45(7):811-817
19.
20.
M. L. Rusche H. L. Mogensen L. Shi P. Keim M. Rougier A. Chaboud C. Dumas 《Genetics》1997,147(4):1915-1921
The B chromosomes of maize typically undergo nondisjunction during the second microspore division (generative cell division). When the microspore nucleus contains only one B chromosome, two kinds of sperm result, one with two B chromosomes and one with no B chromosomes. The sperm with the B chromosomes preferentially fertilizes the egg cell. Previous studies of these phenomena have been limited to genetic analysis and chromosome spreads. In this study we show that a B chromosome-specific probe can be used with fluorescence in situ hybridization (FISH) analysis to detect the presence, location, and frequency of B chromosomes in intact interphase nuclei within mature pollen of maize. Using genetic line TB-10L18, our results indicate that nondisjunction of the B centromere occurs at an average frequency of 56.6%, based on four plants and 1306 pollen grains analyzed. This is consistent with the results of genetic studies using the same B-A translocation. In addition, our results suggest that B chromosome nondisjunction can occur during the first microspore division. Spatial distribution of the B chromosome-specific probe appears to be largely confined to one tip of the sperm nucleus, and a DNA fragment found outside the pollen nuclei often hybridizes to the B chromosome-specific probe. 相似文献