首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basal-like breast cancer (BBC) is an aggressive subtype of breast cancer that has no biologically targeted therapy. The interactions of BBCs with stromal cells are important determinants of tumor biology, with inflammatory cells playing well-recognized roles in cancer progression. Despite the fact that macrophage-BBC communication is bidirectional, important questions remain about how BBCs affect adjacent immune cells. This study investigated monocyte-to-macrophage differentiation and polarization and gene expression in response to coculture with basal-like versus luminal breast cancer cells. Changes induced by coculture were compared with changes observed under classical differentiation and polarization conditions. Monocytes (THP-1 cells) exposed to BBC cells in coculture had altered gene expression with upregulation of both M1 and M2 macrophage markers. Two sets of M1 and M2 markers were selected from the PCR profiles and used for dual immunofluorescent staining of BBC versus luminal cocultured THP-1s, and cancer-adjacent, benign tissue sections from patients diagnosed with BBCs or luminal breast cancer, confirming the differential expression patterns. Relative to luminal breast cancers, BBCs also increased differentiation of monocytes to macrophages and stimulated macrophage migration. Consistent with these changes in cellular phenotype, a distinct pattern of cytokine secretion was evident in macrophage-BBC cocultures, including upregulation of NAP-2, osteoprotegerin, MIG, MCP-1, MCP-3, and interleukin (IL)-1β. Application of IL-1 receptor antagonist (IL-1RA) to cocultures attenuated BBC-induced macrophage migration. These data contribute to an understanding of the BBC-mediated activation of the stromal immune response, implicating specific cytokines that are differentially expressed in basal-like microenvironments and suggesting plausible targets for modulating immune responses to BBCs.  相似文献   

2.
It is well known that the microenvironment plays a major role in breast cancer progression. Yet, the mechanism explaining the transition from normal fibroblasts to cancer-stimulated fibroblasts remains to be elucidated. Here we report a FTIR imaging study of the effects of three different breast cancer cell lines on normal fibroblasts in culture. Fibroblast activation process was monitored by FTIR imaging and spectra compared by multivariate statistical analyses. Principal component analysis evidenced that the fibroblasts stimulated by these cancer cell lines grouped together and remained distinctly separated from normal fibroblasts indicating a modified different chemical composition in the cancer-stimulated fibroblasts. Similar changes in fibroblasts were induced by the various breast cancer cell lines belonging to different sub-types. Most significant changes were observed in the region of 2950 and 1230 cm−1, possibly related to changes in lipids and in the 1230 cm−1 area assigned to phosphate vibrations (nucleotides). Interestingly, the cancer-cell induced changes in the fibroblasts also occurred when there was no possible direct contact between the two cell lines in the co-culture. When contact was possible, the spectral changes were similar, suggesting that soluble factors but not direct cell-cell interactions were responsible for fibroblast activation. Overall, the results indicate that IR imaging could be used in the future for analyzing the microenvironment of breast tumors.  相似文献   

3.
Basal-like breast cancer is a molecularly distinct subtype of breast cancer that is highly aggressive and has a poor prognosis. MicroRNA-29c (miR-29c) has been shown to be significantly down-regulated in basal-like breast tumors and to be involved in cell invasion and sensitivity to chemotherapy. However, little is known about the genetic and regulatory factors contributing to the altered expression of miR-29c in basal-like breast cancer. We here report that epigenetic modifications at the miR-29c promoter, rather than copy number variation of the gene, may drive the lower expression of miR-29c in basal-like breast cancer. Bisulfite sequencing of CpG sites in the miR-29c promoter region showed higher methylation in basal-like breast cancer cell lines compared to luminal subtype cells with a significant inverse correlation between expression and methylation of miR-29c. Analysis of primary breast tumors using The Cancer Genome Atlas (TCGA) dataset confirmed significantly higher levels of methylation of the promoter in basal-like breast tumors compared to all other subtypes. Furthermore, inhibition of CpG methylation with 5-aza-CdR increases miR-29c expression in basal-like breast cancer cells. Flourescent In Situ Hybridization (FISH) revealed chromosomal abnormalities at miR-29c loci in breast cancer cell lines, but with no correlation between copy number variation and expression of miR-29c. Our data demonstrated that dysregulation of miR-29c in basal-like breast cancer cells may be in part driven by methylation at CpG sites. Epigenetic control of the miR-29c promoter by epigenetic modifiers may provide a potential therapeutic target to overcome the aggressive behavior of these cancers.  相似文献   

4.
5.
Mutations in the BRCA1 tumor suppressor gene are commonly found in hereditary breast cancer. Similarly, downregulation of BRCA1 protein expression is observed in the majority of basal-like breast cancers. Here, we set out to study the effects of BRCA1 mutations on oxidative stress in the tumor microenvironment. To mimic the breast tumor microenvironment, we utilized an in vitro co-culture model of human BRCA1-mutated HCC1937 breast cancer cells and hTERT-immortalized human fibroblasts. Notably, HCC1937 cells induce the generation of hydrogen peroxide in the fibroblast compartment during co-culture, which can be inhibited by genetic complementation with the wild-type BRCA1 gene. Importantly, treatment with powerful antioxidants, such as NAC and Tempol, induces apoptosis in HCC1937 cells, suggesting that microenvironmental oxidative stress supports cancer cell survival. In addition, Tempol treatment increases the apoptotic rates of MDA-MB-231 cells, which have wild-type BRCA1, but share a basal-like breast cancer phenotype with HCC1937 cells. MCT4 is the main exporter of L-lactate out of cells and is a marker for oxidative stress and glycolytic metabolism. Co-culture with HCC1937 cells dramatically induces MCT4 protein expression in fibroblasts, and this can be prevented by either BRCA1 overexpression or by pharmacological treatment with NAC. We next evaluated caveolin-1 (Cav-1) expression in stromal fibroblasts. Loss of Cav-1 is a marker of the cancer-associated fibroblast (CAF) phenotype, which is linked to high stromal glycolysis, and is associated with a poor prognosis in numerous types of human cancers, including breast cancers. Remarkably, HCC1937 cells induce a loss of Cav-1 in adjacent stromal cells during co-culture. Conversely, Cav-1 expression in fibroblasts can be rescued by administration of NAC or by overexpression of BRCA1 in HCC1937 cells. Notably, BRCA1-deficient human breast cancer samples (9 out of 10) also showed a glycolytic stromal phenotype, with intense mitochondrial staining specifically in BRCA1-deficient breast cancer cells. In summary, loss of BRCA1 function leads to hydrogen peroxide generation in both epithelial breast cancer cells and neighboring stromal fibroblasts, and promotes the onset of a reactive glycolytic stroma, with increased MCT4 and decreased Cav-1 expression. Importantly, these metabolic changes can be reversed by antioxidants, which potently induce cancer cell death. Thus, antioxidant therapy appears to be synthetically lethal with a BRCA1-deficiency in breast cancer cells and should be considered for future cancer prevention trials. In this regard, immunostaining with Cav-1 and MCT4 could be used as cost-effective biomarkers to monitor the response to antioxidant therapy.  相似文献   

6.
Breast cancer tissue consists of both carcinoma cells and stromal cells, and intratumoral stroma is composed of various cell types such as fibroblasts, adipocytes, inflammatory including lymphocytes and macrophage and lymphatic and blood capillaries including pericytes and endothelial cells. Recently, cell-cell communications or interactions among these cells have been considered to play an important role to cancer initiation, promotion, and progression. In particular, intratumoral fibroblasts are well known as cancer-associated fibroblast (CAF). CAF is considered to be different from normal fibroblasts in terms of promoting cancer progression through the cytokine signals. Carcinoma cell lines have contributed to the advancement of our understanding of cancer cell biology. Numerous researches have employed these carcinoma cell lines as a single- or mono-culture. However, it is also true that this mono-culture system cannot evaluate interactions between carcinoma and intratumoral stromal cells. Co-culture compositions of two different cell type of cancer tissues i.e., carcinoma cell lines and fibroblasts, were established in order to evaluate cell-cell interactions in these cancer microenvironment. This co-culture condition has the advantage of evaluating cell-cell interactions of cancer microenvironment. Therefore, in this review, we focused upon co-culture system and its application to understanding of various biological phenomenon as an ex vivo evaluation method of cancer microenvironment in breast cancer.  相似文献   

7.
Increasing evidence indicates that invasive properties of breast cancers rely on gain of mesenchymal and stem features, which has suggested that the dual targeting of these phenotypes may represent an appealing therapeutic strategy. It is known that the fraction of stem cells can be enriched by culturing breast cancer cells as mammospheres (MS), but whether these pro-stem conditions favor also the expansion of cells provided of mesenchymal features is still undefined.

In the attempt to shed light on this issue, we compared the phenotypes of a panel of 10 breast cancer cell lines representative of distinct subtypes (luminal, HER2-positive, basal-like and claudin-low), grown in adherent conditions and as mammospheres. Under MS-proficient conditions, the increment in the fraction of stem-like cells was associated to upregulation of the mesenchymal marker Vimentin and downregulation of the epithelial markers expressed by luminal cells (E-cadherin, KRT18, KRT19, ESR1). Luminal cells tended also to upregulate the myoepithelial marker CD10. Taken together, our data indicate that MS-proficient conditions do favor mesenchymal/myoepithelial features, and indicate that the use of mammospheres as an in vitro tumor model may efficiently allow the exploitation of therapeutic approaches aimed at targeting aggressive tumors that have undergone epithelial-to-mesenchymal transition.  相似文献   

8.
Increasing evidence indicates that invasive properties of breast cancers rely on gain of mesenchymal and stem features, which has suggested that the dual targeting of these phenotypes may represent an appealing therapeutic strategy. It is known that the fraction of stem cells can be enriched by culturing breast cancer cells as mammospheres (MS), but whether these pro-stem conditions favor also the expansion of cells provided of mesenchymal features is still undefined. In the attempt to shed light on this issue, we compared the phenotypes of a panel of 10 breast cancer cell lines representative of distinct subtypes (luminal, HER2-positive, basal-like and claudin-low), grown in adherent conditions and as mammospheres. Under MS-proficient conditions, the increment in the fraction of stem-like cells was associated to upregulation of the mesenchymal marker Vimentin and downregulation of the epithelial markers expressed by luminal cells (E-cadherin, KRT18, KRT19, ESR1). Luminal cells tended also to upregulate the myoepithelial marker CD10. Taken together, our data indicate that MS-proficient conditions do favor mesenchymal/myoepithelial features, and indicate that the use of mammospheres as an in vitro tumor model may efficiently allow the exploitation of therapeutic approaches aimed at targeting aggressive tumors that have undergone epithelial-to-mesenchymal transition.  相似文献   

9.
We have developed 3D coculture models, which we term MAME (mammary architecture and microenvironment engineering), and used them for live-cell imaging in real-time of cell:cell interactions. Our overall goal was to develop models that recapitulate the architecture of preinvasive breast lesions to study their progression to an invasive phenotype. Specifically, we developed models to analyze interactions among pre-malignant breast epithelial cell variants and other cell types of the tumor microenvironment that have been implicated in enhancing or reducing the progression of preinvasive breast epithelial cells to invasive ductal carcinomas. Other cell types studied to date are myoepithelial cells, fibroblasts, macrophages and blood and lymphatic microvascular endothelial cells. In addition to the MAME models, which are designed to recapitulate the cellular interactions within the breast during cancer progression, we have developed comparable models for the progression of prostate cancers. Here we illustrate the procedures for establishing the 3D cocultures along with the use of live-cell imaging and a functional proteolysis assay to follow the transition of cocultures of breast ductal carcinoma in situ (DCIS) cells and fibroblasts to an invasive phenotype over time, in this case over twenty-three days in culture. The MAME cocultures consist of multiple layers. Fibroblasts are embedded in the bottom layer of type I collagen. On that is placed a layer of reconstituted basement membrane (rBM) on which DCIS cells are seeded. A final top layer of 2% rBM is included and replenished with every change of media. To image proteolysis associated with the progression to an invasive phenotype, we use dye-quenched (DQ) fluorescent matrix proteins (DQ-collagen I mixed with the layer of collagen I and DQ-collagen IV mixed with the middle layer of rBM) and observe live cultures using confocal microscopy. Optical sections are captured, processed and reconstructed in 3D with Volocity visualization software. Over the course of 23 days in MAME cocultures, the DCIS cells proliferate and coalesce into large invasive structures. Fibroblasts migrate and become incorporated into these invasive structures. Fluorescent proteolytic fragments of the collagens are found in association with the surface of DCIS structures, intracellularly, and also dispersed throughout the surrounding matrix. Drugs that target proteolytic, chemokine/cytokine and kinase pathways or modifications in the cellular composition of the cocultures can reduce the invasiveness, suggesting that MAME models can be used as preclinical screens for novel therapeutic approaches.  相似文献   

10.
11.
12.
Certain immune cells and inflammatory cytokines are essential components in the tumor microenvironment to promote breast cancer progression. To identify key immune players in the tumor microenvironment, we applied highly invasive MDA-MB-231 breast cancer cell lines to co-culture with human monocyte THP-1 cells and identified CXCL7 by cytokine array as one of the increasingly secreted cytokines by THP-1 cells. Further investigations indicated that upon co-culturing, breast cancer cells secreted CSF1 to induce expression and release of CXCL7 from monocytes, which in turn acted on cancer cells to promote FAK activation, MMP13 expression, migration, and invasion. In a xenograft mouse model, administration of CXCL7 antibodies significantly reduced abundance of M2 macrophages in tumor microenvironment, as well as decreased tumor growth and distant metastasis. Clinical investigation further suggested that high CXCL7 expression is correlated with breast cancer progression and poor overall survival of patients. Overall, our study unveils an important immune cytokine, CXCL7, which is secreted by tumor infiltrating monocytes, to stimulate cancer cell migration, invasion, and metastasis, contributing to the promotion of breast cancer progression.Subject terms: Breast cancer, Cancer microenvironment, Target identification, Chemokines  相似文献   

13.

Background

Breast cancer is a remarkably heterogeneous disease. Luminal, basal-like, “normal-like”, and ERBB2+ subgroups were identified and were shown to have different prognoses. The mechanisms underlying this heterogeneity are poorly understood. In our study, we explored the role of cellular differentiation and senescence as a potential cause of heterogeneity.

Methodology/Principal Findings

A panel of breast cancer cell lines, isogenic clones, and breast tumors were used. Based on their ability to generate senescent progeny under low-density clonogenic conditions, we classified breast cancer cell lines as senescent cell progenitor (SCP) and immortal cell progenitor (ICP) subtypes. All SCP cell lines expressed estrogen receptor (ER). Loss of ER expression combined with the accumulation of p21Cip1 correlated with senescence in these cell lines. p21Cip1 knockdown, estrogen-mediated ER activation or ectopic ER overexpression protected cells against senescence. In contrast, tamoxifen triggered a robust senescence response. As ER expression has been linked to luminal differentiation, we compared the differentiation status of SCP and ICP cell lines using stem/progenitor, luminal, and myoepithelial markers. The SCP cells produced CD24+ or ER+ luminal-like and ASMA+ myoepithelial-like progeny, in addition to CD44+ stem/progenitor-like cells. In contrast, ICP cell lines acted as differentiation-defective stem/progenitor cells. Some ICP cell lines generated only CD44+/CD24-/ER-/ASMA- progenitor/stem-like cells, and others also produced CD24+/ER- luminal-like, but not ASMA+ myoepithelial-like cells. Furthermore, gene expression profiles clustered SCP cell lines with luminal A and “normal-like” tumors, and ICP cell lines with luminal B and basal-like tumors. The ICP cells displayed higher tumorigenicity in immunodeficient mice.

Conclusions/Significance

Luminal A and “normal-like” breast cancer cell lines were able to generate luminal-like and myoepithelial-like progeny undergoing senescence arrest. In contrast, luminal B/basal-like cell lines acted as stem/progenitor cells with defective differentiation capacities. Our findings suggest that the malignancy of breast tumors is directly correlated with stem/progenitor phenotypes and poor differentiation potential.  相似文献   

14.
Breast cancer is the most common malignancy in women worldwide, with a developmental process spanning decades. The malignant cells recruit a variety of cells including fibroblasts, endothelial cells, immune cells, and adipocytes, creating the tumor microenvironment. The tumor microenvironment has emerged as active participants in breast cancer progression and response to treatment through autocrine and paracrine interaction with the malignant cells. Adipose tissue is abundant in the breast cancer microenvironment; interactions with cancer cells create cancer-associated adipocytes which produce a variety of adipokines that influence breast cancer initiation, metastasis, angiogenesis, and cachexia. Interleukin (IL)-6 has emerged as key compound significantly produced by breast cancer cells and adipocytes, with the potential of inducing proliferation, epithelial-mesenchymal phenotype, stem cell phenotype, angiogenesis, cachexia, and therapeutic resistance in breast cancer cells. Our aim is to present a brief knowledge of IL-6’s role in breast cancer. This review summarizes our current understanding of the breast microenvironment, with emphasis on adipocytes as key players in breast cancer tumorigenesis. The effects of key adipocytes such as leptin, adipokines, TGF-b, and IL-6 are discussed. Finally, we discuss the role of IL-6 in various aspects of cancer progression.  相似文献   

15.
Recently, we proposed a new paradigm for understanding the role of the tumor microenvironment in breast cancer onset and progression. In this model, cancer cells induce oxidative stress in adjacent fibroblasts. This, in turn, results in the onset of stromal autophagy, which produces recycled nutrients to “feed” anabolic cancer cells. However, it remains unknown how autophagy in the tumor microenvironment relates to inflammation, another key driver of tumorigenesis. To address this issue, here we employed a well-characterized co-culture system in which cancer cells induce autophagy in adjacent fibroblasts via oxidative stress and NFκB-activation. We show, using this co-culture system, that the same experimental conditions that result in an autophagic microenvironment, also drive in the production of numerous inflammatory mediators (including IL-6, IL-8, IL-10, MIP1a, IFNg, RANTES (CCL5) and GMCSF). Furthermore, we demonstrate that most of these inflammatory mediators are individually sufficient to directly induce the onset of autophagy in fibroblasts. To further validate the in vivo relevance of these findings, we assessed the inflammatory status of Cav-1 (-/-) null mammary fat pads, which are a model of a bonafide autophagic microenvironment. Notably, we show that Cav-1 (-/-) mammary fat pads undergo infiltration with numerous inflammatory cell types, including lymphocytes, T-cells, macrophages and mast cells. Taken together, our results suggest that cytokine production and inflammation are key drivers of autophagy in the tumor microenvironment. These results may explain why a loss of stromal Cav-1 is a powerful predictor of poor clinical outcome in breast cancer patients, as it is a marker of both (1) autophagy and (2) inflammation in the tumor microenvironment. Lastly, hypoxia in fibroblasts was not sufficient to induce the full-blown inflammatory response that we observed during the co-culture of fibroblasts with cancer cells, indicating that key reciprocal interactions between cancer cells and fibroblasts may be required.  相似文献   

16.
17.
Recently, we proposed a new paradigm for understanding the role of the tumor microenvironment in breast cancer onset and progression. In this model, cancer cells induce oxidative stress in adjacent fibroblasts. This, in turn, results in the onset of stromal autophagy, which produces recycled nutrients to “feed” anabolic cancer cells. However, it remains unknown how autophagy in the tumor microenvironment relates to inflammation, another key driver of tumorigenesis. To address this issue, here we employed a well-characterized co-culture system in which cancer cells induce autophagy in adjacent fibroblasts via oxidative stress and NFκB-activation. We show, using this co-culture system, that the same experimental conditions that result in an autophagic microenvironment, also drive in the production of numerous inflammatory mediators (including IL-6, IL-8, IL-10, MIp1α, IFNγ, RANTES (CCL5) and GMCSF). Furthermore, we demonstrate that most of these inflammatory mediators are individually sufficient to directly induce the onset of autophagy in fibroblasts. To further validate the in vivo relevance of these findings, we assessed the inflammatory status of Cav-1 (−/−) null mammary fat pads, which are a model of a bonafide autophagic microenvironment. Notably, we show that Cav-1 (−/−) mammary fat pads undergo infiltration with numerous inflammatory cell types, including lymphocytes, T-cells, macrophages and mast cells. Taken together, our results suggest that cytokine production and inflammation are key drivers of autophagy in the tumor microenvironment. These results may explain why a loss of stromal Cav-1 is a powerful predictor of poor clinical outcome in breast cancer patients, as it is a marker of both (1) autophagy and (2) inflammation in the tumor microenvironment. Lastly, hypoxia in fibroblasts was not sufficient to induce the full-blown inflammatory response that we observed during the co-culture of fibroblasts with cancer cells, indicating that key reciprocal interactions between cancer cells and fibroblasts may be required.Key words: caveolin-1, oxidative stress, cytokine production, inflammation, tumor microenvironment, autophagy, breast cancer  相似文献   

18.
To elucidate the histogenesis of gastric scirrhous cancer, the promotion of collagen production by normal human skin fibroblasts (HSF-1) with human gastric cancer cells (KATO-III, MKN-45 and MKN-28) was investigated by direct coculture and parabiotic culture. Argyrophilic collagenous fibers were demonstrated among fibroblasts on both direct cocultures and parabiotic cultures of the fibroblasts with gastric cancer cells. Microscopic examination showed that these fibers appeared earlier and were more abundant and thicker in direct cocultures and parabiotic cultures than in single cultures of fibroblasts. Gastric cancer cells in single or parabiotic culture did not form argyrophilic fibers. For quantitative proof of the promotion of collagen production by fibroblasts with gastric cancer cells, hydroxyproline produced by fibroblasts was measured. Much higher fibroblast hydroxyproline values were obtained in parabiotic cultures with gastric cancer cell lines than in single cultures of HSF-1. Moreover, the rate of collagen synthesis by HSF-1 was much higher than that of any gastric cancer cell line tested. These results demonstrate that gastric cancer cells enhance collagen production by fibroblasts in vitro. This finding suggests that they may produce a factor promoting fibroblast collagen synthesis and that this may contribute to the formation of stromal collagen in human gastric scirrhous cancer.  相似文献   

19.
IntroductionAnnexin A1 (ANXA1) is an anti-inflammatory protein reported to play a role in cell proliferation and apoptosis, and to be deregulated in breast cancer. The exact role of annexin A1 in the biology of breast cancer remains unclear. We hypothesized that the annexin A1 plays an oncogenic role in basal subtype of breast cancer by modulating key growth pathway(s).MethodsBy mining the Cancer Genome Atlas (TCGA)-Breast Cancer dataset and manipulating annexin A1 levels in breast cancer cell lines, we studied the role of annexin A1 in breast cancer and underlying signaling pathways.ResultsOur in-silico analysis of TCGA-breast cancer dataset demonstrated that annexin A1 mRNA expression is higher in basal subtype compared to luminal and HER2 subtypes. Within the basal subtype, patients show significantly poorer overall survival associated with higher expression of annexin A1. In both TCGA patient samples and cell lines, annexin A1 levels were significantly higher in basal-like breast cancer than luminal and Her2/neu-positive breast cancer. Stable annexin A1 knockdown in TNBC cell lines suppressed the mTOR-S6 pathway likely through activation of AMPK but had no impact on the MAPK, c-Met, and EGFR pathways. In a cell migration assay, annexin A1-depleted TNBC cells showed delayed migration as compared to wild-type cells, which could be responsible for poor patient prognosis in basal like breast cancers that are known to express higher annexin A1.ConclusionsOur data suggest that annexin A1 is prognostic only in patients with basal like breast cancer. This appears to be in part due to the role of annexin A1 in activating mTOR-pS6 pathway.  相似文献   

20.
CXC趋化因子配体8(CXC chemokine ligand 8,CXCL8)在结直肠癌等多种肿瘤中高表达,并促进肿瘤恶性进展。研究发现,结直肠癌微环境中有大量M2型巨噬细胞浸润,但CXCL8是否影响M2型巨噬细胞的浸润及其潜在机制尚未可知。本文旨在探讨CXCL8对结直肠癌中M2型巨噬细胞浸润及趋化作用的影响。本研究首先分析了TCGA数据库结直肠癌样本中CXCL8表达水平及免疫细胞浸润情况,并在临床组织中进行验证。随后Western 印迹及qRT-PCR检测5种结直肠癌细胞株CXCL8的表达情况。佛波酯(PMA)及IL-4诱导THP-1至M2型巨噬细胞后,与HCT116、SW480细胞及过表达CXCL8的HCT116(CXCL8/HCT116)、SW480(CXCL8/SW480)共培养,检测M2型巨噬细胞趋化情况。白细胞介素1β(IL-1β)处理HCT116、SW480细胞,检测CXCL8表达情况,与M2型巨噬细胞共培养,分析趋化结果。结果显示,患者癌组织CXCL8表达高于癌旁组织,CXCL8高表达癌组织中存在更多M2型巨噬细胞浸润;IL-1β作用于HCT116或SW480后,CXCL8的mRNA及蛋白质表达水平升高(P<0.05)。Transwell实验证实,CXCL8趋化M2型巨噬细胞(P<0.05)。综上所述,结直肠癌细胞中CXCL8可由IL-1β诱导产生,CXCL8表达增加能够促进M2型巨噬细胞的趋化,结直肠癌微环境中M2型巨噬细胞大量浸润可能与CXCL8表达升高有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号