首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
CD4+ T cells have been shown to be essential for vaccine-induced protection against Helicobacter pylori infection. However, the effector mechanisms leading to reductions in the gastric bacterial loads of vaccinated mice remain unclear. We have investigated the function of IFN-γ and IL-17A for vaccine-induced protection and inflammation (gastritis) using IFN-γ-gene-knockout (IFN-γ-/-) mice, after sublingual or intragastric immunization with H. pylori lysate antigens and cholera toxin. Bacteria were enumerated in the stomachs of mice and related to the gastritis score and cellular immune responses. We report that sublingually and intragastrically immunized IFN-γ-/- mice had significantly reduced bacterial loads similar to immunized wild-type mice compared to respective unimmunized infection controls. The reduction in bacterial loads in sublingually and intragastrically immunized IFN-γ-/- mice was associated with significantly higher levels of IL-17A in stomach extracts and lower gastritis scores compared with immunized wild-type mice. To study the role of IL-17A for vaccine-induced protection in sublingually immunized IFN-γ-/- mice, IL-17A was neutralized in vivo at the time of infection. Remarkably, the neutralization of IL-17A in sublingually immunized IFN-γ-/- mice completely abolished protection against H. pylori infection and the mild gastritis. In summary, our results suggest that IFN-γ responses in the stomach of sublingually immunized mice promote vaccine-induced gastritis, after infection with H. pylori but that IL-17A primarily functions to reduce the bacterial load.  相似文献   

6.
7.
8.
9.
InductionofRatProlactinomabyβ-EstradiolandItsRelationtoExpressionofc-mycOncogene¥XURong-kun(许荣琨);GUOChuan-hai(郭传海);HUANGMan-y...  相似文献   

10.
11.
12.
13.
14.
15.
16.
We examined the effect of the cellular sphingolipid level on the release of arachidonic acid (AA) and activity of cytosolic phospholipase A2α (cPLA2α) using two Chinese hamster ovary (CHO)-K1-derived mutants deficient in sphingolipid synthesis: LY-B cells defective in the LCB1 subunit of serine palmitoyltransferase for de novo synthesis of sphingolipid species, and LY-A cells defective in the ceramide transfer protein CERT for SM synthesis. When LY-B and LY-A cells were cultured in Nutridoma medium and the sphingolipid level was reduced, the release of AA stimulated by the Ca2+ ionophore A23187 increased 2-fold and 1.7-fold, respectively, compared with that from control cells. The enhancement in LY-B cells was decreased by adding sphingosine and treatment with the cPLA2α inhibitor. When CHO cells were treated with an acid sphingomyelinase inhibitor to increase the cellular SM level, the release of AA induced by A23187 or PAF was decreased. In vitro studies were then conducted to test whether SM interacts directly with cPLA2α. Phosphatidylcholine vesicles containing SM reduced cPLA2α activity. Furthermore, SM disturbed the binding of cPLA2α to glycerophospholipids. These results suggest that SM at the biomembrane plays important roles in regulating the cPLA2α-dependent release of AA by inhibiting the binding of cPLA2α to glycerophospholipids.  相似文献   

17.
Endothelin-1 (ET-1) is a potent vasoconstrictor and co-mitogen for vascular smooth muscle and is implicated in pulmonary vascular remodeling and the development of pulmonary arterial hypertension. Vascular smooth muscle is an important source of ET-1. Here we demonstrate synergistic induction of preproET-1 message RNA and release of mature peptide by a combination of tumor necrosis factor α (TNFα) and interferon γ (IFNγ) in primary human pulmonary artery smooth muscle cells. This induction was prevented by pretreatment with the histone acetyltransferase inhibitor anacardic acid. TNFα induced a rapid and prolonged pattern of nuclear factor (NF)-κB p65 subunit activation and binding to the native preproET-1 promoter. In contrast, IFNγ induced a delayed activation of interferon regulatory factor-1 without any effect on NF-κB p65 nuclear localization or consensus DNA binding. However, we found cooperative p65 binding and histone H4 acetylation at distinct κB sites in the preproET-1 promoter after stimulation with both TNFα and IFNγ. This was associated with enhanced recruitment of RNA polymerase II to the ATG start site and read-through of the ET-1 coding region. Understanding such mechanisms is crucial in determining the key control points in ET-1 release. This has particular relevance to developing novel treatments targeted at the inflammatory component of pulmonary vascular remodeling.Endothelin-1 is a 21-amino acid peptide which is known to be both a potent vasoconstrictor and mitogen for vascular smooth muscle (1, 2). It is released as a 38-amino acid precursor (Big ET-12) before cleavage to the mature ET-1 form. As such it has been implicated in the pathogenesis of vascular disease and is particularly associated with pulmonary arterial hypertension (3). Indeed, several endothelin receptor antagonists are now approved for the treatment of pulmonary arterial hypertension (4). However, endothelin receptor antagonists as a class are associated with potentially serious side effects (4), making new treatments aimed at blocking ET-1 synthesis an attractive alternative.Although endothelial cells are thought to be the main source of ET-1 release, several groups including our own have shown that ET-1 can be released from the more numerous vascular smooth muscle cells (510). The vascular pathology observed in pulmonary arterial hypertension is propagated by inflammation, and circulating levels of cytokines including tumor necrosis factor α (TNFα) are elevated in patients with pulmonary arterial hypertension (1115). In many cell types cytokines mediate their biological effects at least in part by the activation of the nuclear factor κB (NF-κB) pathway (16), and a role for NF-κB in pulmonary arterial hypertension has been proposed (17). In addition, we have shown previously that a combination of TNFα and interferon γ (IFNγ) stimulates human pulmonary artery smooth muscle (HPASM) cells to release ET-1 (18). However, the mechanisms underlying this effect are unknown.The preproET-1 promoter region has been shown experimentally to possess binding sites for nuclear factor (NF)-1 and phorbol ester-sensitive c-Fos and c-Jun complexes (19), acute phase reactant regulatory proteins, and binding sites for AP-1 and GATA-2 (2022). In addition, binding sites for interferon regulatory factor-1 (IRF-1) and NF-κB are predicted by Transfac analysis (23). The close proximity of the IRF-1 site and one of the NF-κB sites is characteristic of genes that are regulated by the synergistic action of TNFα and IFNγ, such as interleukin-6 (IL-6) and intercellular adhesion molecule-1 (24, 25), although ET-1 has not previously been recognized in this group.Our aims were, therefore, to investigate the role of NF-κB in ET-1 release by primary HPASM cells. In addition, we were interested in the role of histone acetylation in the epigenetic control of the ET-1 production. Understanding these novel mechanisms will allow a greater understanding of the pathogenesis of vascular remodeling in pulmonary vessels and aid in the development of new treatment strategies aimed at blocking synthesis of ET-1.  相似文献   

18.
The human pathogen Helicobacter pylori that may cause different gastric diseases exploits integrins for infection of gastric cells. The H. pylori protein CagL present on the outer region of the type IV secretion pilus contains an RGD sequence (-Arg-Gly-Asp-) that enables binding to cells presenting integrins α5β1 and αVβ3. This interaction can be inhibited with conformationally designed cyclic RGD peptides derived from the CagL epitope -Ala-Leu-Arg-Gly-Asp-Leu-Ala-. The inhibition of the CagL-αVβ3 interaction by different RGD peptides strongly suggests the importance of the RGD motif for CagL binding. CagL point mutants (RAD, RGA) show decreased affinity to integrin αVβ3. Furthermore, structure-activity relationship studies with cyclic RGD peptides in a spatial screening approach show the distinct influence of the three-dimensional arrangement of RGD motif on the ability to interfere with this interaction. Resulting from these studies, similar structural requirements for the CagL epitope as previously suggested for other ligands of integrin αVβ3 are proposed.  相似文献   

19.
Src-suppressed C kinase substrate (SSeCKS), a protein kinase C substrate, is a major lipopolysaccharide (LPS) response protein. In addition, β-1,4 Galactosyltransferase-I (β-1,4-GalT-I) also plays an important role in the inflammation reactions of nervous system. It was reported that both SSeCKS and β-1,4-GalT-I were involved in the LPS-induced tumor necrosis factor-alpha (TNF-α) expression in rat primary astrocytes. However, the functional interaction between SSeCKS and β-1,4-GalT-I in the LPS-induced TNF-α secretion remains unclear. Therefore, in this study, using the inflammation model of astrocytes treated by LPS in vitro, we found that the changed expressions of SSeCKS and β-1,4-GalT-I participated in LPS-induced TNF-α secretion through p38, JNK, and ERK signal transduction pathways in rat primary astrocytes. Knockdown by small-interfering RNAs (siRNAs) or overexpression of SSeCKS and β-1,4-GalT-I could influence Mitogen-activated protein kinases (MAPKs) signaling pathways activation and TNF-α secretion. Besides, we confirmed that knockdown of SSeCKS could prevent the induction of β-1,4-GalT-I in this process. Inversely, β-1,4-GalT-I had no significant effect on SSeCKS expression in the same way. In summary, our data indicated that SSeCKS could regulate LPS-induced TNF-α secretion through β-1,4-GalT-I in rat primary astrocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号