首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of antagonists to the α4 integrin family of cell adhesion molecules has been an active area of pharmaceutical research to treat inflammatory and autoimmune diseases. Presently being tested in human clinical trials are compounds selective for α4β1 (VLA-4) as well as several dual antagonists that inhibit both α4β1 and α4β7. The value of a dual versus a selective small molecule antagonist as well as the consequences of inhibiting different affinity states of the α4 integrins have been debated in the literature. Here, we characterize TBC3486, a N,N-disubstituted amide, which represents a unique structural class of non-peptidic, small molecule VLA-4 antagonists. Using a variety of adhesion assay formats as well as flow cytometry experiments using mAbs specific for certain activation-dependent integrin epitopes we demonstrate that TBC3486 preferentially targets the high affinity conformation of α4β1 and behaves as a ligand mimetic. The antagonist is capable of blocking integrin-dependent T-cell co-activation in vitro as well as proves to be efficacious in vivo at low doses in two animal models of allergic inflammation. These data suggest that a small molecule α4 integrin antagonist selective for α4β1 over α4β7 and, specifically, selective for the high affinity conformation of α4β1 may prove to be an effective therapy for multiple inflammatory diseases in humans.  相似文献   

2.
VLA-2, the α2β1 integrin, mediates cell adhesion to collagen and laminin, and is the receptor for the human pathogen echovirus 1. Because of its similarity to domains present in other proteins that interact with collagen, a 191 amino acid region within the α2 subunit (the I domain) has been proposed as a potential site for ligand interactions. Although the α2 subunits of human and murine VLA-2 are 84% identical, human α2 promotes virus binding whereas murine α2 does not. We used murine/human chimeric α2 molecules to identify regions of the human molecule essential for virus binding. Virus bound efficiently to a chimeric protein in which the human I domain was inserted into murine α2, indicating that the human I domain is responsible for specific virus interactions. Monoclonal antibodies that inhibited virus attachment all recognized epitopes within the human I do-main, further suggesting that virus interacts with this portion of the molecule. Similarly, antibodies that prevented VLA-2-mediated cell adhesion to collagen also mapped to the I domain. These results indicate that the I domain plays a role in VLA-2 interactions both with virus and with extracellular matrix ligands.  相似文献   

3.
Three divalent cation binding sites in the integrin β I domain have been shown to regulate ligand binding and adhesion. However, the degree of ligand binding and adhesion varies among integrins. The αLβ2 and α4β7 integrins show an increase in ligand binding affinity and adhesion when one of their ADMIDAS (adjacent to MIDAS, or the metal ion-dependent adhesion site) residues is mutated. By contrast, the α2β1, α5β1, and αIIbβ3 integrins show a decrease in binding affinity and adhesion when their ADMIDAS is mutated. Our study here indicated that integrin αVβ3 had lower affinity when the ADMIDAS was mutated. By comparing the primary sequences of these integrin subunits, we propose that one residue associated with the MIDAS (β3 Ala(252)) may account for these differences. In the β1 integrin subunit, the corresponding residue is also Ala, whereas in both β2 and β7 integrin subunits, it is Asp. We mutated the β3 residue Ala(252) to Asp and combined this mutant with mutations of one or two ADMIDAS residues. The mutant A252D showed reduced ligand binding affinity and adhesion. The ligand binding affinity and adhesion were increased when this A252D mutant was paired with mutations of one ADMIDAS residue. But when paired with mutations of two ADMIDAS residues the mutant nearly abolished ligand-binding ability, which was restored by the activating glycosylation mutation. Our study suggests that the variation of this residue contributes to the different ligand binding affinities and adhesion abilities among different integrin families.  相似文献   

4.
BackgroundIntegrins are extracellular matrix receptors involved in several pathologies. Despite homologies between the RGD-binding α5β1 and αvβ3 integrins, selective small antagonists for each heterodimer have been proposed. Herein, we evaluated the effects of such small antagonists in a cellular context, the U87MG cell line, which express both integrins. The aim of the study was to determine if fibronectin-binding integrin antagonists are able to impact on cell adhesion and migration in relationships with their defined affinity and selectivity for α5β1 and αvβ3/β5 purified integrins.MethodsSmall antagonists were either selective for α5β1 integrin, for αvβ3/β5 integrin or non-selective. U87MG cell adhesion was evaluated on fibronectin or vitronectin. Migration assays included wound healing recovery and single cell tracking experiments. U87MG cells stably manipulated for the expression of α5 integrin subunit were used to explore the impact of α5β1 integrin in the biological assays.ResultsU87MG cell adhesion on fibronectin or vitronectin was respectively dependent on α5β1 or αvβ3/β5 integrin. Wound healing migration was dependent on both integrins. However U87MG single cell migration was highly dependent on α5β1 integrin and was inhibited selectively by α5β1 integrin antagonists but increased by αvβ3/β5 integrin antagonists.ConclusionsWe provide a rationale for testing new integrin ligands in a cell-based assay to characterize more directly their potential inhibitory effects on integrin cellular functions.General significanceOur data highlight a single cell tracking assay as a powerful cell-based test which may help to characterize true functional integrin antagonists that block α5β1 integrin-dependent cell migration.  相似文献   

5.
Piperidinyl carboxylic acid-based derivatives were prepared as antagonists of the leukocyte cell adhesion process that is mediated through the interaction of the alpha(4)beta(1) integrin (VLA-4, very late antigen 4) and the vascular cell adhesion molecule 1 (VCAM-1). Compounds 2a-h inhibited the adhesion in a cell-based assay in the low and sub micromolar range, a pharmacokinetic study of 2d is reported.  相似文献   

6.
Traditionally, cell adhesion assays are performed in a manual workstation format using fluorescence-based readouts. Herein, the authors describe a label-free homogeneous assay to identify inhibitors of α4β7 integrin-mediated cell adhesion to its ligand, the mucosal addressin cell adhesion molecule (MadCAM), using the SRU BIND platform. The biosensor is optically based and comprises a subwavelength polymer grating. The assay was validated using standard compounds and an α4 blocking antibody and correlated very closely with the manual assay format when running a battery of test compounds of varying potencies. Cell adhesion was strictly dependent on the presence of divalent cations where Mg(2+) was greater than Ca(2+) at promoting cell adhesion. This homogeneous and label-free format exhibited low variability with a calculated Z' of 0.6. In addition to measuring α4β7-mediated 8866 cell adhesion to MadCAM, the authors also demonstrate that this platform can measure adhesion of Jurkat cells expressing α4β1 to the vascular cell adhesion molecule. Thus, the SRU BIND platform is widely applicable to measuring cell adhesion events mediated by other integrins binding to their receptors in an assay format that is amenable to high-throughput screening.  相似文献   

7.
To control their attachment to substrates and other cells, cells regulate their adhesion receptors. One regulatory process is receptor crosstalk, where the binding of one type of cell adhesion molecule influences the activity of another type. To identify such crosstalk and gain insight into their mechanisms, we developed the stimulated single‐cell force spectroscopy assay. In this assay, the influence of a cells adhesion to one substrate on the strength of its adhesion to a second substrate is examined. The assay quantifies the adhesion of the cell and the contributions of specific adhesion receptors. This allows mechanisms by which the adhesion is regulated to be determined. Using the assay we identified crosstalk between collagen‐binding integrin α1β1 and fibronectin‐binding integrin α5β1 in HeLa cells. This crosstalk was unidirectional, from integrin α1β1 to integrin α5β1, and functioned by regulating the endocytosis of integrin α5β1. The single‐cell assay should be expandable for the screening and quantification of crosstalk between various cell adhesion molecules and other cell surface receptors.  相似文献   

8.
Vascular cell adhesion molecule 1 (VCAM-1), a member of the Ig superfamily originally identified on activated endothelium, binds to the integrin very late antigen-4 (VLA-4), also known as alpha 4 beta 1 or CD49d/CD29, to support cell-cell adhesion. Studies based on cell adhesion to two alternatively spliced forms of VCAM-1 or to chimeric molecules generated from them and intercellular adhesion molecule-1 (ICAM-1) have demonstrated two VLA-4 binding sites on the predominate form of VCAM-1. Here, we studied VLA-4-dependent adhesion of the lymphoid tumor cell line Ramos to cells expressing wild type and mutant forms of VCAM-1. Results based on domain deletion mutants demonstrated the existence and independence of two VLA-4-binding sites located in the first and fourth domains of VCAM-1. Results based on amino acid substitution mutants demonstrated that residues within a linear sequence of six amino acids found in both domain 1 and 4 were required for VLA-4 binding to either domain. Five of these amino acids represent a conserved motif also found in ICAM domains. We propose that integrin binding to these Ig-like domains depends on residues within this conserved motif. Specificity of integrin binding to Ig-like domains may be regulated by a set of nonconserved residues distinct from the conserved motif.  相似文献   

9.
ABSTRACT

Coordination of the specific functions of α5β1 and αvβ3 integrins is crucial for the precise regulation of cell adhesion, spreading and migration, yet the contribution of differential integrin-specific crosstalk to these processes remains unclear. To determine the specific functions of αvβ3 and α5β1 integrins, we used nanoarrays of gold particles presenting immobilized, integrin-selective peptidomimetic ligands. Integrin binding to the peptidomimetics is highly selective, and cells can spread on both ligands. However, spreading is faster and the projected cell area is greater on α5β1 ligand; both depend on ligand spacing. Quantitative analysis of adhesion plaques shows that focal adhesion size is increased in cells adhering to αvβ3 ligand at 30 and 60 nm spacings. Analysis of αvβ3 and α5β1 integrin clusters indicates that fibrillar adhesions are more prominent in cells adhering to α5β1 ligand, while clusters are mostly localized at the cell margins in cells adhering to αvβ3 ligand. αvβ3 integrin clusters are more pronounced on αvβ3 ligand, though they can also be detected in cells adhering to α5β1 ligand. Furthermore, α5β1 integrin clusters are present in cells adhering to α5β1 ligand, and often colocalize with αvβ3 clusters. Taken together, these findings indicate that the activation of αvβ3 integrin by ligand binding is dispensable for initial adhesion and spreading, but essential to formation of stable focal adhesions.  相似文献   

10.
The lymphocyte homing receptor integrin α(4)β(7) is unusual for its ability to mediate both rolling and firm adhesion. α(4)β(1) and α(4)β(7) are targeted by therapeutics approved for multiple sclerosis and Crohn's disease. Here, we show by electron microscopy and crystallography how two therapeutic Fabs, a small molecule (RO0505376), and mucosal adhesion molecule-1 (MAdCAM-1) bind α(4)β(7). A long binding groove at the α(4)-β(7) interface for immunoglobulin superfamily domains differs in shape from integrin pockets that bind Arg-Gly-Asp motifs. RO0505376 mimics an Ile/Leu-Asp motif in α(4) ligands, and orients differently from Arg-Gly-Asp mimics. A novel auxiliary residue at the metal ion-dependent adhesion site in α(4)β(7) is essential for binding to MAdCAM-1 in Mg(2+) yet swings away when RO0505376 binds. A novel intermediate conformation of the α(4)β(7) headpiece binds MAdCAM-1 and supports rolling adhesion. Lack of induction of the open headpiece conformation by ligand binding enables rolling adhesion to persist until integrin activation is signaled.  相似文献   

11.
Ten years ago, we introduced a fluorescent probe that shed light on the inside-out regulation of one of the major leukocyte integrins, very late antigen-4 (VLA-4, CD49d/CD29). Here we describe the regulation of another leukocyte integrin, lymphocyte function-associated antigen-1 (LFA-1, CD11a/CD18) using a novel small fluorescent probe in real time on live cells. We found that multiple signaling mechanisms regulate LFA-1 conformation in a manner analogous to VLA-4. LFA-1 can be rapidly activated by Gα(i)-coupled G protein-coupled receptors (GPCRs) and deactivated by Gα(s)-coupled GPCRs. The effects of Gα(s)-coupled GPCR agonists can be reversed in real time by receptor-specific antagonists. The specificity of the fluorescent probe binding has been assessed in a competition assay using the natural LFA-1 ligand ICAM-1 and the LFA-1-specific α I allosteric antagonist BIRT0377. Similar to VLA-4 integrin, modulation of the ligand dissociation rate can be observed for different LFA-1 affinity states. However, we also found a striking difference in the binding of the small fluorescent ligand. In the absence of inside-out activation ligand, binding to LFA-1 is extremely slow, at least 10 times slower than expected for diffusion-limited binding. This implies that an additional structural mechanism prevents ligand binding to inactive LFA-1. We propose that such a mechanism explains the inability of LFA-1 to support cell rolling, where the absence of its rapid engagement by a counterstructure in the inactive state leads to a requirement for a selectin-mediated rolling step.  相似文献   

12.
A variety of proteins, including tenascin-C and osteopontin, have been identified as ligands for integrin α9β1. However, their affinities for integrin α9β1 are apparently much lower than those of other integrins (e.g. α3β1, α5β1, and α8β1) for their specific ligands, leaving the possibility that physiological ligands for integrin α9β1 still remain unidentified. In this study, we found that polydom (also named SVEP1) mediates cell adhesion in an integrin α9β1-dependent manner and binds directly to recombinant integrin α9β1 with an affinity that far exceeds those of the known ligands. Using a series of recombinant polydom proteins with N-terminal deletions, we mapped the integrin-binding site to the 21st complement control protein domain. Alanine-scanning mutagenesis revealed that the EDDMMEVPY sequence (amino acids 2636-2644) in the 21st complement control protein domain was involved in the binding to integrin α9β1 and that Glu(2641) was the critical acidic residue for the integrin binding. The importance of this sequence was further confirmed by integrin binding inhibition assays using synthetic peptides. Immunohistochemical analyses of mouse embryonic tissues showed that polydom colocalized with integrin α9 in the stomach, intestine, and other organs. Furthermore, in situ integrin α9β1 binding assays using frozen mouse tissues showed that polydom accounts for most, but not all, of the integrin α9β1 ligands in tissues. Taken together, the present findings indicate that polydom is a hitherto unknown ligand for integrin α9β1 that functions as a physiological ligand in vivo.  相似文献   

13.
Entactin is an extracellular matrix glycoprotein which binds to laminin and is found in most renal basement membranes and in the glomerular mesangial matrix. In the present study, we have characterized specific integrin receptors on cultured human mesangial cells (CHMC) responsible for adhesion to native entactin. The integrin receptors α2,β1, α3,β1, α5,β1, αv,β3, αv,β5, and α6 complexed with either β1 or β4 could be immune precipitated from detergent extracts of metabolically labeled CHMC. Adhesion assays with inhibitory anti integrin monoclonal antibodies (mab) demonstrated that CHMC use both αv,β3 and a β1-containing integrin to bind surfaces coated with native entactin. Optimal binding of CHMC to native entactin required the participation of cations. Using wild type and mutant recombinant entactin fragments, the binding site for the αv,β3 receptor was localized to the RGD sequence on the rod or E domain of entactin. CHMC adhesion to mutant full length recombinant entactin ligands lacking the E domain RGD sequence confirmed the presence of ligand binding site(s) for β1 integrin receptor(s). Differences in CHMC binding characteristics to recombinant and full length entactin compared to native bovine basement membrane entactin were observed. This suggests that tertiary molecular structure may contribute to entactin ligand binding properties. Primary amino acid residue sequences and tertiary structure of entactin may play roles in forming functional cell attachment sites in native basement membrane entactin.  相似文献   

14.
Rapid activation of integrins in response to chemokine-induced signaling serves as a basis for leukocyte arrest on inflamed endothelium. Current models of integrin activation include increased affinity for ligand, molecular extension, and others. In this study, using real-time fluorescence resonance energy transfer to assess alpha(4)beta(1) integrin conformational unbending and fluorescent ligand binding to assess affinity, we report at least four receptor states with independent regulation of affinity and unbending. Moreover, kinetic analysis of chemokine-induced integrin conformational unbending and ligand-binding affinity revealed conditions under which the affinity change was transient whereas the unbending was sustained. In a VLA-4/VCAM-1-specific myeloid cell adhesion model system, changes in the affinity of the VLA-4-binding pocket were reflected in rapid cell aggregation and disaggregation. However, the initial rate of cell aggregation increased 9-fold upon activation, of which only 2.5-fold was attributable to the increased affinity of the binding pocket. These data show that independent regulation of affinity and conformational unbending represents a novel and fundamental mechanism for regulation of integrin-dependent adhesion in which the increased affinity appears to account primarily for the increasing lifetime of the alpha(4)beta(1) integrin/VCAM-1 bond, whereas the unbending accounts for the increased capture efficiency.  相似文献   

15.
Most mononuclear leukocytes and cell lines express the integrin alpha 4 beta 1 (VLA-4) heterodimer. In this study we have used Northern blotting and immunoprecipitation experiments to demonstrate that a B lymphoblastoid cell line (JY) expressed the integrin beta 7 subunit in association with alpha 4. These alpha 4 beta 7-positive JY cells bound poorly or not at all to VLA-4 ligands (soluble form of vascular cell adhesion molecule 1 (sVCAM-1) and the CS1 region of fibronectin). In contrast, a beta 1-positive variant of JY cells (selected to express a mixture of alpha 4 beta 1 and alpha 4 beta 7) bound avidly to VLA-4 ligands, and this binding was completely inhibitable by anti-alpha 4 and anti-beta 1 monoclonal antibodies. Thus, beta 1 expression appears to be a critically important component of VLA-4-mediated binding to its ligands. After either JY or JY-beta 1 cells were stimulated for 15 min with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate, the majority of adhesion to VCAM or fibronectin remained alpha 4- and beta 1-dependent, but a low amount of adhesion to sVCAM-1 or fibronectin became alpha 4-dependent, beta 1-independent, thus suggesting a role for alpha 4 beta 7. In summary, we have found (i) that alpha 4 beta 7 makes little or no contribution to fibronectin or VCAM-1 binding on unstimulated JY cells, (ii) that alpha 4 beta 7 perhaps makes a minor contribution to ligand binding on 12-O-tetradecanoyl-phorbol-13-acetate-stimulated cells, and (iii) that alpha 4 beta 1 is the functionally dominant VCAM-1 and fibronectin receptor even when expressed in relatively low amounts compared to alpha 4 beta 7.  相似文献   

16.
Integrin α9β1 mediates accelerated cell adhesion and migration through interactions with a number of diverse extracellular ligands. We have shown previously that it directly binds the vascular endothelial growth factors (VEGF) A, C, and D and contributes to VEGF-induced angiogenesis and lymphangiogenesis. Until now, the α9β1 binding site in VEGF has not been identified. Here, we report that the three-amino acid sequence, EYP, encoded by exon 3 of VEGF-A is essential for binding of VEGF to integrin α9β1 and induces adhesion and migration of endothelial and cancer cells. EYP is specific for α9β1 binding and neither requires nor activates VEGFR-2, the cognate receptor for VEGF-A. Following binding to EYP, integrin α9β1 transduces cell migration through direct activation of the integrin signaling intermediates Src and focal adhesion kinase. This interaction is biologically important because it mediates in vitro endothelial cell tube formation, wound healing, and cancer cell invasion. These novel findings identify EYP as a potential site for directed pharmacotherapy.  相似文献   

17.
Terephthalic acid based derivatives containing beta- and gamma-amino acid residues were prepared as antagonists of the leukocyte cell adhesion process that is mediated through the interaction of the very late antigen 4 (VLA-4) and the vascular cell adhesion molecule 1 (VCAM-1). The compounds 2, 10-12, 14, and 16-17 inhibited the adhesion in a cell based assay in the low and sub micromolar range.  相似文献   

18.
Irisin, a myokine released from skeletal muscle, has recently been found to act as a ligand for the integrins αVβ5, αVβ1, and α5β1 expressed on mesenchymal cells, thereby playing an important role in the metabolic remodeling of the bone, skeletal muscle and adipose tissues. Although the immune-modulatory effects of irisin in chronic inflammation have been documented, its interactions with lymphocytic integrins have yet to be elucidated. Here, we show that irisin supports the cell adhesion of human and mouse lymphocytes. Cell adhesion assays using a panel of inhibitory antibodies to integrins have shown that irisin-mediated lymphocyte adhesion involves multiple integrins including not only α4β1 and α5β1, but also leukocyte-specific αLβ2 and α4β7. Importantly, mouse lymphocytic TK-1 cells that lack the expression of β1 integrins have exhibited αLβ2- and α4β7-mediated cell adhesion to irisin. Irisin has also been demonstrated to bind to purified recombinant integrin αLβ2 and α4β7 proteins. Thus, irisin represents a novel ligand for integrin αLβ2 and α4β7, capable of supporting lymphocyte cell adhesion independently of β1 integrins. These results suggest that irisin may play an important role in regulating lymphocyte adhesion and migration in the inflamed vasculature.  相似文献   

19.
In normal epithelial cells, integrin α(6)β(4) is abundantly expressed and forms hemidesmosomes, which is a cellular structure that mediates cell-extracellular matrix binding. In many types of cancer cells, integrin α(6)β(4) is up-regulated, laminin is cleaved, and hemidesmosomes are disrupted, eventually causing an enhancement of cancer cell movement and facilitation of their invasion. We previously showed that the immunoglobulin-like cell adhesion molecule Necl-2 (Nectin-like molecule 2), known as a tumor suppressor, inhibits cancer cell movement by suppressing the ErbB3/ErbB2 signaling. We show here that Necl-2 interacts in cis with integrin α(6)β(4). The binding of Necl-2 with integrin β(4) was mediated by its extracellular region. In human colorectal adenocarcinoma Caco-2 cells, integrin α(6)β(4) was localized at hemidesmosomes. Small interfering RNA-mediated suppression of Necl-2 expression enhanced the phorbol ester-induced disruption of the integrin α(6)β(4) complex at hemidesmosomes, whereas expression of Necl-2 suppressed the disruption of this structure. These results indicate that tumor-suppressive functions of Necl-2 are mediated by the stabilization of the hemidesmosome structure in addition to the inhibition of the ErbB3/ErbB2 signaling.  相似文献   

20.
Background information. Previous studies have reported that cross‐talk between integrins may be an important regulator of integrin—ligand binding and subsequent signalling events that control a variety of cell functions in many tissues. We previously demonstrated that αvβ5/β6 integrin represses α2β1‐dependent cell migration. The αv subunits undergo an endoproteolytic cleavage by protein convertases, whose role in tumoral invasion has remained controversial. Results. Inhibition of convertases by the convertase inhibitor α1‐PDX (α1‐antitrypsin Portland variant), leading to the cell‐surface expression of an uncleaved form of the αv integrin, stimulated cell migration toward type I collagen. Under convertase inhibition, α2β1 engagement led to enhanced phosphorylation of both FAK (focal adhesion kinase) and MAPK (mitogen‐activated protein kinase). This outside‐in signalling stimulation was associated with increased levels of activated β1 integrin located in larger than usual focal‐adhesion structures and a cell migration that was independent of the PI3K (phosphoinositide 3‐kinase)/Akt (also called protein kinase B) pathway. Conclusions. The increase in cell migration observed upon convertases inhibition appears to be due to the up‐regulation of β1 integrins and to their location in larger focal‐adhesion structures. The endoproteolytic cleavage of αv subunits is necessary for αvβ5/β6 integrin to control α2β1 function and could thus play an essential role in colon cancer cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号