首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pattern of light backscattered by lung tissue should depend strongly on the size of air spaces and equivalently on the internal surface area of the lung. To verify and apply this, we shone a laser beam into excised lungs through the pleural surface and measured the backscattered light surrounding the beam with a focused photodetector. The intensity, I, fell off as a function of distance, r, from the point of entry of light. The configurations of I(r) curves corresponded closely to theory over a 3-decade range of I. I(r) changed systematically with lung volume. The optical mean free path, lambda, was calculated from I(r) curves in a series of canine lobes fixed immediately after optical scanning and was compared with stereological measurement of mean linear intercept, Lm, an index of alveolar size. At high lung volumes the relation of lambda to Lm was consistent with reflection by alveolar septa. At lower lung volumes there appeared to be, additionally, a substantial refractive component. This technique is independent of current stereological methods and has the advantages of being noninvasive, continuous, and potentially applicable to dynamic events in unfixed lungs.  相似文献   

2.
Adult male rats were subjected to four cycles of mild starvation (2 wk) and refeeding (1 wk) and were compared with a fed group. Starvation was induced by giving rats one-third of their measured daily food consumption. During each starvation cycle, rats lost approximately 20% of their body weight. Despite catch-up growth and overall weight gain, starved rats had lower final body weight than fed rats. Lung dry weight and lung volumes were also reduced in the starved group. The mechanical properties of air- and saline-filled lungs did not change significantly with repeated cycles of starvation. Mean linear intercept was similar in the two groups, but alveolar surface area was reduced in the starved rats. Total content of crude connective tissue and concentration per lung dry weight of hydroxyproline and crude connective tissue were reduced in starved rats. We conclude that lung growth is retarded in growing rats subjected to repeated cycles of mild starvation and refeeding, as manifested by smaller lung volume and reduced alveolar surface area. Because alveolar size is unchanged, a reduced number of alveoli is most likely responsible for decreased lung volumes.  相似文献   

3.
Alveolar surface tension (gamma)-lung volume relationships were obtained for quasi-static and dynamic lung pressure-volume (PV) histories from measurements of PV curves of liquid- and air-filled excised rabbit lungs. PV relationships were measured at room temperature in lungs filled with test liquids with constant liquid-liquid interfacial tensions with alveolar surface-active materials; and air-filled lungs before and after the normal alveolar surface film was covered with test liquids with constant values of liquid- and air-liquid interfacial tensions. Interfacial tensions of test liquids were measured in a surface balance on monolayers of dipalmitoyl phosphatidylcholine. Values of gamma for the normal air-filled lung were obtained either from points of intersection between PV curves with the normal and test liquid interface or from a general relationship between gamma and the component of recoil pressure due to surface tension derived from the data. In contrast to previous analyses that have used PV measurements, this approach does not depend on assumptions about lung microstructural geometry. Surface tension-volume relationships for the normal air-filled lung show a prominent hysteresis with surface tension ranging from near 0 at low volumes during lung deflation to transiently high values near 40 dyn/cm during inflation; value of equilibrium surface tension (gamma EQ) near 28 dyn/cm; and characteristic transitions in surface film compressibility and associated transitions in film kinetic behavior in nonequilibrium film states where gamma deviates from gamma EQ. These features are consistent with the behavior predicted from current models of alveolar surface film behavior.  相似文献   

4.
A species comparison of alveolar size and surface forces   总被引:1,自引:0,他引:1  
The independent roles of alveolar size and surface tension in relation to lung stability were investigated in 11 different mammalian species whose body weight ranged from 0.03 to 50 kg. This range in species provided a wide variation in subgross anatomy as well as a fourfold range in alveolar diameter. Alveolar diameter was estimated from the mean linear intercept (Lm) of fixed lungs. Quasi-static pressure-volume curves were determined in excised lungs and the percent volume remaining on deflation from total lung capacity at 30 cmH2O to 10 cmH2O (%V10) provided an index of deflation stability related to functional surfactant. Surface tension of lung extract was measured in the Wilhelmy balance, and the minimum surface tension measured provided an index of surface tension lowering capacity of surfactant. Relationships of %V10 with alveolar diameter and surface tension with alveolar diameter were examined for correlations. Our results indicated that despite a range in Lm between 31 and 133 micron (mouse to pig), %V10 did not change in proportion with Lm across species. Similarly, minimum surface tension was about the same (6.1 to 8.8 dyn/cm) across a threefold difference in alveolar diameter. These results suggest that a stable alveolar configuration is maintained by both surface and tissue forces in a complex manner yet to be analyzed.  相似文献   

5.
Oxidative stress plays a role in the pathophysiology of emphysema through the activation of tissue proteases and apoptosis. We examined the effects of ozone exposure by exposing BALB/c mice to either a single 3-h exposure or multiple exposures over 3 or 6 wk, with two 3-h exposures per week. Compared with air-exposed mice, the increase in neutrophils in bronchoalveolar lavage fluid and lung inflammation index was greatest in mice exposed for 3 and 6 wk. Lung volumes were increased in 3- and 6-wk-exposed mice but not in single-exposed. Alveolar space and mean linear intercept were increased in 6- but not 3-wk-exposed mice. Caspase-3 and apoptosis protease activating factor-1 immunoreactivity was increased in the airway and alveolar epithelium and macrophages of 3- and 6-wk-exposed mice. Interleukin-13, keratinocyte chemoattractant, caspase-3, and IFN-γ mRNA were increased in the 6-wk-exposed group, but heme oxygenase-1 (HO-1) mRNA decreased. matrix metalloproteinase-12 (MMP-12) and caspase-3 protein expression increased in lungs of 6-wk-exposed mice. Collagen area increased and epithelial area decreased in airway wall at 3- and 6-wk exposure. Exposure of mice to ozone for 6 wk induced a chronic inflammatory process, with alveolar enlargement and damage linked to epithelial apoptosis and increased protease expression.  相似文献   

6.
Besides lowering cholesterol, statins exert multiple effects, such as anti-inflammatory activity and improvement of endothelial cell function. We examined whether simvastatin (SS) protects against the development of elastase-induced pulmonary emphysema in mice by using mean linear intercepts of alveoli (Lm) as a morphometric parameter of emphysema. After injection of intratracheal elastase on day 0, C57BL/6 mice were treated daily with SS (SS+ group) or PBS (SS- group) for 2 wk. A 21% decrease in Lm on day 7 was observed in the SS+ group vs. the SS- group. Anti-inflammatory effects of SS were observed as a decrease in percentage of neutrophils up to day 3, and in hydroxyproline concentration on day 3, in bronchoalveolar lavage fluid (BALF). SS also increased the number of proliferating cell nuclear antigen (PCNA)-positive alveolar epithelial cells between days 3 and 14. To confirm the role of statins in promoting proliferation of alveolar cells, mice were treated with SS (SS+) vs. PBS (SS-) for 12 days, starting 3 wk after elastase administration. After SS treatment, Lm decreased by 52% and PCNA-positive alveolar epithelial cells increased compared with the SS- group. Concentrations of vascular endothelial growth factor in BALF and endothelial nitric oxide synthase protein expression in pulmonary vessels tended to be higher in the SS+ group vs. the SS- group in this protocol. In conclusion, SS inhibited the development of elastase-induced pulmonary emphysema in mice. This therapeutic effect was due not only to anti-inflammation but also to the promotion of alveolar epithelial cell regeneration, partly mediated by restoring endothelial cell functions.  相似文献   

7.
To determine the reason for increased pulmonary distensibility in excised lungs, we performed deflation pressure-volume (PV) studies in 24 dogs. Exponential analysis of PV data gave K, an index of distensibility. Lung volume was measured by dilution of neon. Compared with measurements obtained in the supine position, with the chest closed, and with esophageal pressure (Pes) to obtain transpulmonary pressure, K was not changed significantly with the chest strapped, with pleural pressure to obtain transpulmonary pressure, or with the chest open. From displacement of PV curves obtained in the supine position and with the chest closed or open, we estimated that Pes was 0.18 kPa greater than average lung surface pressure. An increase in K in the prone and head-up positions was attributed to a traction artifact decreasing Pes. Exsanguination increased K and produced a relative increase in gas volume. These results show that overall pulmonary distensibility is unaffected by an intact chest wall. An increase in K and gas volume after exsanguination probably reflects a decreased pulmonary blood volume, with collapse of capillaries increasing the alveolar volume-to-surface ratio.  相似文献   

8.
To determine whether all-trans retinoic acid (RA) treatment enhances lung function during compensatory lung growth in fully mature animals, adult male dogs (n = 4) received 2 mg x kg(-1) x day(-1) po RA 4 days/wk beginning the day after right pneumonectomy (R-PNX, 55-58% resection). Litter-matched male R-PNX controls (n = 4) received placebo. After 3 mo, transpulmonary pressure (TPP)-lung volume relationship, diffusing capacities for carbon monoxide and nitric oxide, cardiac output, and septal volume (V(tiss-RB)) were measured under anesthesia by a rebreathing technique at two lung volumes. Lung air and tissue volumes (V(air-CT) and V(tiss-CT)) were also measured from high-resolution computerized tomographic (CT) scans at a constant TPP. In RA-treated dogs compared with controls, TPP-lung volume relationships were similar. Diffusing capacities for carbon monoxide and nitric oxide were significantly impaired at a lower lung volume but similar at a high lung volume. Whereas V(tiss-RB) was significantly lower at both lung volumes in RA-treated animals, V(air-CT) and V(tiss-CT) were not different between groups; results suggest uneven distribution of ventilation consistent with distortion of alveolar geometry and/or altered small airway function induced by RA. We conclude that RA does not improve resting pulmonary function during the early months after R-PNX despite histological evidence of its action in enhancing alveolar cellular growth in the remaining lung.  相似文献   

9.
Mammalian alveoli, complex architectural and cellular units with dimensions that are linked to the organism's O2 consumption (VO2), are thought to be destroyed only by disease and not to spontaneously regenerate. Calorie restriction of adult mammals lowers VO2, and ad libitum refeeding returns VO2 to pre-calorie-restriction values. We took advantage of these relationships and tested the hypothesis in adult mice that calorie restriction (two-thirds reduction for 2 wk) followed by ad libitum refeeding (3 wk) would cause alveolar destruction and regeneration, respectively. Calorie restriction diminished alveolar number 55% and alveolar surface area 25%. Refeeding fully reversed these changes. Neither manipulation altered lung volume. Within 72 h, calorie restriction increased alveolar wall cell apoptosis and diminished lung DNA (approximately 20%). By 72 h of refeeding, alveolar wall cell replication increased and lung DNA rose to amounts in mice that were never calorie restricted. We conclude that adult mice have endogenous programs to destroy and regenerate alveoli, thereby raising the danger of inappropriate activation but the possibility of therapeutic induction, if similar programs exist in humans.  相似文献   

10.
Intermittent hypoxia (IH) is a hallmark feature in obstructive sleep apnea (OSA) which is increasingly recognized as an independent risk factor for atherosclerosis. Oxidative stress, inflammation, and cell apoptosis are major pathological events initiating or accelerating atherogenesis. This study addressed whether IH would affect these proatherogenic factors in endothelial cells and the mechanistic pathways involved. EA.hy926 cells were exposed to intermittent normoxia or IH for different numbers of cycles (32, 64, or 96). IH exposure time-dependently raised cellular GSSG/GSH ratio, increased production of IL-6 and IL-8, and accelerated cell apoptosis and death, concurrent with activation of NF-κB and inhibition of Nrf2/HO-1 pathways. At 64 cycles, inhibition of NF-κB attenuated IH-induced cellular oxidative stress and accumulation of inflammatory cytokines in cell culture medium but aggravated IH-induced cell apoptosis, while stimulation of HO-1 suppressed IH-induced cellular oxidative stress and cell apoptosis without affecting accumulation of inflammatory cytokines in cell culture medium. We demonstrated that early stage of exposure to IH-induced oxidative and inflammatory stresses leading to acceleration of cell apoptosis via NF-κB and Nrf2/HO-1 pathways in endothelial cells, suggesting the potential mechanisms for IH-induced vascular pathogenesis, in resemblance to OSA.  相似文献   

11.
Obstructive sleep apnea (OSA) is closely associated with cancer progression and cancer-related mortality. N6-methyladenosine (m6A) is involved in the process of intermittent hypoxia (IH) promoting tumor progression. However, it is unclear how m6A regulates the development of lung adenocarcinoma under IH. In this study, we found that ALKBH5 was elevated in lung adenocarcinoma cells and subcutaneous tumors in mice under IH, which was associated with decreased m6A levels in these cells and tissues. Next, we knocked out ALKBH5 in a human lung adenocarcinoma cell line under IH, and we found that the proliferation and invasion of these cells were significantly inhibited. Mechanistic analysis showed that under IH, knockout of ALKBH5 in lung adenocarcinoma cells upregulated the level of m6A in Forkhead box M1 (FOXM1) mRNA and decreased the translation efficiency of FOXM1 mRNA, resulting in downregulation of the FOXM1 protein. The FOXM1 protein is elevated in lung adenocarcinoma cells and subcutaneous tumor tissues of mice under IH. By knocking out FOXM1 in lung adenocarcinoma cells under IH, proliferation and invasion of these cells were inhibited, and overexpression of FOXM1 partially restored the inhibition of growth and invasion of lung adenocarcinoma cells due to ALKBH5 knockout. Collectively, our findings demonstrate that the m6A demethylase ALKBH5 affects the proliferation and invasion of lung adenocarcinoma cells under IH by downregulating m6A modification on FOXM1 mRNA and by promoting FOXM1 expression.  相似文献   

12.
While aging leads to a reduction in the capacity for regeneration after pneumonectomy (PNX) in most mammals, this biological phenomenon has not been characterized over the lifetime of mice. We measured the age-specific (3, 9, 24 month) effects of PNX on physiology, morphometry, cell proliferation and apoptosis, global gene expression, and lung fibroblast phenotype and clonogenicity in female C57BL6 mice. The data show that only 3 month old mice were fully capable of restoring lung volumes by day 7 and total alveolar surface area by 21 days. By 9 months, the rate of regeneration was slower (with incomplete regeneration by 21 days), and by 24 months there was no regrowth 21 days post-PNX. The early decline in regeneration rate was not associated with changes in alveolar epithelial cell type II (AECII) proliferation or apoptosis rate. However, significant apoptosis and lack of cell proliferation was evident after PNX in both total cells and AECII cells in 24 mo mice. Analysis of gene expression at several time points (1, 3 and 7 days) post-PNX in 9 versus 3 month mice was consistent with a myofibroblast signature (increased Tnc, Lox1, Col3A1, Eln and Tnfrsf12a) and more alpha smooth muscle actin (αSMA) positive myofibroblasts were present after PNX in 9 month than 3 month mice. Isolated lung fibroblasts showed a significant age-dependent loss of clonogenicity. Moreover, lung fibroblasts isolated from 9 and 17 month mice exhibited higher αSMA, Col3A1, Fn1 and S100A expression, and lower expression of the survival gene Mdk consistent with terminal differentiation. These data show that concomitant loss of clonogenicity and progressive myofibroblastic differentiation contributes to the age-dependent decline in the rate of lung regeneration.  相似文献   

13.
14.
The double sigmoidal nature of the mouse pressure-volume (PV) curve is well recognized but largely ignored. This study systematically examined the effect of inflating the mouse lung to 40 cm H2O transrespiratory pressure (Prs) in vivo. Adult BALB/c mice were anesthetized, tracheostomized, and mechanically ventilated. Thoracic gas volume was calculated using plethysmography and electrical stimulation of the intercostal muscles. Lung mechanics were tracked during inflation-deflation maneuvers using a modification of the forced oscillation technique. Inflation beyond 20 cm H2O caused a shift in subsequent PV curves with an increase in slope of the inflation limb and an increase in lung volume at 20 cm H2O. There was an overall decrease in tissue elastance and a fundamental change in its volume dependence. This apparent "softening" of the lung could be recovered by partial degassing of the lung or applying a negative transrespiratory pressure such that lung volume decreased below functional residual capacity. Allowing the lung to spontaneously recover revealed that the lung required approximately 1 h of mechanical ventilation to return to the original state. We propose a number of possible mechanisms for these observations and suggest that they are most likely explained by the unfolding of alveolar septa and the subsequent redistribution of the fluid lining the alveoli at high transrespiratory pressure.  相似文献   

15.
During breathing the relatively high chest wall-to-lung compliance ratio of the newborn favors distortion of the respiratory system. In this study we have examined the effect of lung deformation, generated by a hydrostatic pleural surface pressure gradient, on the static (Cstat) and dynamic (Cdyn) compliance of the isolated newborn piglet lung. Seven lungs from piglets 2-7 days old have been studied in a saline-filled plethysmograph. Static pressure-volume (PV) curves were obtained by changing the volume a known amount and measuring the corresponding changes in transpulmonary pressure. Dynamic PV curves were obtained by ventilating the lung at a fixed pressure and at 20 cycles/min. These experiments were repeated in an air plethysmograph on the undeformed lung. Lung volume history was standardized prior to each maneuver by three inflations to 20-25 cmH2O. Lung collapse was avoided by applying an end-expiratory load equal to the transpulmonary pressure at functional residual capacity. Cstat was not significantly different between the deformed and undeformed lung (P greater than 0.05). Cdyn was less than Cstat in both cases (P less than 0.025) and was reduced further by deformation (P less than 0.05). We conclude that 1) peripheral airway obstruction or the viscoelastic properties of the piglet lung, or both, decrease Cdyn, and 2) deformation increases the external (PV) respiratory work by further decreasing Cdyn.  相似文献   

16.
Recently, a Sendai virus (SeV) model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human chronic obstructive pulmonary disease (COPD) and asthma, but the effect on distal lung parenchyma has not been investigated. The aim of our study is to image the time course and regional distribution of mouse lung microstructural changes in vivo after SeV infection. (1)H and (3)He diffusion magnetic resonance imaging (MRI) were successfully performed on five groups of C57BL/6J mice. (1)H MR images provided precise anatomical localization and lung volume measurements. (3)He lung morphometry was implemented to image and quantify mouse lung geometric microstructural parameters at different time points after SeV infection. (1)H MR images detected the SeV-induced pulmonary inflammation in vivo; spatially resolved maps of acinar airway radius R, alveolar depth h, and mean linear intercept Lm were generated from (3)He diffusion images. The morphometric parameters R and Lm in the infected group were indistinguishable from PBS-treated mice at day 21, increased slightly at day 49, and were increased with statistical significance at day 77 (p = 0.02). Increases in R and Lm of infected mice imply that there is a modest increase in alveolar duct radius distal to airway inflammation, particularly in the lung periphery, indicating airspace enlargement after virus infection. Our results indicate that (3)He lung morphometry has good sensitivity in quantifying small microstructural changes in the mouse lung and that the Sendai mouse model has the potential to be a valid murine model of COPD.  相似文献   

17.
Chronic intermittent hypoxia (IH) during sleep can result from obstructive sleep apnea (OSA), a disorder that is particularly prevalent in obesity. OSA is associated with high levels of circulating leptin, cardiovascular dysfunction, and dyslipidemia. Relationships between leptin and cardiovascular function in OSA and chronic IH are poorly understood. We exposed lean wild-type (WT) and obese leptin-deficient ob/ob mice to IH for 4 wk, with and without leptin infusion, and measured cardiovascular indices including aortic vascular stiffness, endothelial function, cardiac myocyte morphology, and contractile properties. At baseline, ob/ob mice had decreased vascular compliance and endothelial function vs. WT mice. We found that 4 wk of IH decreased vascular compliance and endothelial relaxation responses to acetylcholine in both WT and leptin-deficient ob/ob animals. Recombinant leptin infusion in both strains restored IH-induced vascular abnormalities toward normoxic WT levels. Cardiac myocyte morphology and function were unaltered by IH. Serum cholesterol and triglyceride levels were significantly decreased by leptin treatment in IH mice, as was hepatic stearoyl-Coenzyme A desaturase 1 expression. Taken together, these data suggest that restoring normal leptin signaling can reduce vascular stiffness, increase endothelial relaxation, and correct dyslipidemia associated with IH.  相似文献   

18.
To test the hypothesis that VEGF is important for the maintenance of alveolar structure and elastic properties in adult mice, lung-targeted ablation of the VEGF gene was accomplished through intratracheal delivery of an adeno-associated cre recombinase virus (AAV/Cre) to VEGFloxP mice, and the effects were followed for 8 wk. Control mice were similarly treated with AAV/Cre. Pulmonary VEGF levels were reduced by 86% at 5 wk postinfection but returned to normal levels by 8 wk. VEGF receptor VEGFR-2 levels were also reduced at 5 wk (by 51%) and returned to control values by 8 wk. However, alveolar septal wall destruction (increased mean linear intercept) and loss of lung elastic recoil (increased compliance) persisted for 8 wk. No decrease in alveolar cell proliferation was detected by Western blot or immunohistochemical analysis of proliferating cell nuclear antigen. Increased alveolar septal cell and bronchial epithelial cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling analysis at 5 wk. Total lung caspase-3 levels and enzyme activity were also increased at 5 wk. No obvious accumulation of inflammatory cells was observed at any time after tracheal instillation of AAV/Cre. Thus a transient decrease in pulmonary VEGF leads to increased alveolar and bronchial cell apoptosis, air space enlargement, and changes in lung elastic recoil (processes that are characteristic of emphysema) that persist for at least 8 wk.  相似文献   

19.
In recent decades the mouse has become the primary animal model of a variety of lung diseases. In models of emphysema or fibrosis, the essential phenotypic changes are best assessed by measurement of the changes in lung elasticity. To best understand specific mechanisms underlying such pathologies in mice, it is essential to make functional measurements that can reflect the developing pathology. Although there are many ways to measure elasticity, the classical method is that of the total lung pressure-volume (PV) curve done over the whole range of lung volumes. This measurement has been made on adult lungs from nearly all mammalian species dating back almost 100 years, and such PV curves also played a major role in the discovery and understanding of the function of pulmonary surfactant in fetal lung development. Unfortunately, such total PV curves have not been widely reported in the mouse, despite the fact that they can provide useful information on the macroscopic effects of structural changes in the lung. Although partial PV curves measuring just the changes in lung volume are sometimes reported, without a measure of absolute volume, the nonlinear nature of the total PV curve makes these partial ones very difficult to interpret. In the present study, we describe a standardized way to measure the total PV curve. We have then tested the ability of these curves to detect changes in mouse lung structure in two common lung pathologies, emphysema and fibrosis. Results showed significant changes in several variables consistent with expected structural changes with these pathologies. This measurement of the lung PV curve in mice thus provides a straightforward means to monitor the progression of the pathophysiologic changes over time and the potential effect of therapeutic procedures.  相似文献   

20.
In addition to its vasodilator properties, nitric oxide (NO) promotes angiogenesis in the systemic circulation and tumors. However, the role of NO in promoting normal lung vascular growth and its impact on alveolarization during development or in response to perinatal stress is unknown. We hypothesized that NO modulates lung vascular and alveolar growth and that decreased NO production impairs distal lung growth in response to mild hypoxia. Litters of 1-day-old mouse pups from parents that were heterozygous for endothelial nitric oxide synthase (eNOS) deficiency were placed in a hypobaric chamber at a simulated altitude of 12,300 ft (Fi(O(2)) = 0.16). After 10 days, the mice were killed, and lungs were fixed for morphometric and molecular analysis. Compared with wild-type controls, mean linear intercept (MLI), which is inversely proportional to alveolar surface area, was increased in the eNOS-deficient (eNOS -/-) mice [51 +/- 2 micro m (eNOS -/-) vs. 41 +/- 1 micro m (wild type); P < 0.01]. MLI was also increased in the eNOS heterozygote (+/-) mice (44 +/- 1 micro m; P < 0.03 vs. wild type). Vascular volume density was decreased in the eNOS -/- mice compared with wild-type controls (P < 0.03). Lung vascular endothelial growth factor (VEGF) protein and VEGF receptor-1 (VEGFR-1) protein content were not different between the study groups. In contrast, lung VEGFR-2 protein content was decreased from control values by 63 and 34% in the eNOS -/- and eNOS +/- mice, respectively (P < 0.03). We conclude that exposure to mild hypoxia during a critical period of lung development impairs alveolarization and reduces vessel density in the eNOS-deficient mouse. We speculate that NO preserves normal distal lung growth during hypoxic stress, perhaps through preservation of VEGFR-2 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号