首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proline dehydrogenase (ProDH) catalyzes the flavin-dependent oxidation of Pro into Δ1-pyrroline-5-carboxylate (P5C). This is the first of the two enzymatic reactions that convert proline (Pro) into glutamic acid (Glu). The P5C thus produced is non-enzymatically transformed into glutamate semialdehyde (GSA), which acts as a substrate of P5C dehydrogenase (P5CDH) to generate Glu. Activation of ProDH can generate different effects depending on the behavior of other enzymes of this metabolism. Under different conditions it can generate toxic levels of P5C, alter the cellular redox homeostasis and even produce reactive oxygen species (ROS). Recent studies indicate that in Arabidopsis, the enzyme potentiates the oxidative burst and cell death associated to the Hypersensitive Responses (HR). Interestingly, activation of ProDH can also produce harmful effects in other organisms, suggesting that the enzyme may play a conserved role in the control of cell death.Key words: proline, proline dehydrogenase, cell death, hypersensitive response (HR), reactive oxygen species (ROS)  相似文献   

2.
Delta1-pyrroline-5-carboxylate (P5C), an intermediate in biosynthesis and degradation of proline (Pro), is assumed to play a role in cell death in plants and animals. Toxicity of external Pro and P5C supply to Arabidopsis suggested that P5C dehydrogenase (P5CDH; EC 1.2.1.12) plays a crucial role in this process by degrading the toxic Pro catabolism intermediate P5C. Also in a Deltaput2 yeast mutant, lacking P5CDH, Pro led to growth inhibition and formation of reactive oxygen species (ROS). Complementation of the Deltaput2 mutant allowed identification of the Arabidopsis P5CDH gene. AtP5CDH is a single-copy gene and the encoded protein was localized to the mitochondria. High homology of AtP5CDH to LuFIS1, an mRNA up-regulated during susceptible pathogen attack in flax, suggested a role for P5CDH in inhibition of hypersensitive reactions. An Arabidopsis mutant (cpr5) displaying a constitutive pathogen response was found to be hypersensitive to external Pro. In agreement with a role in prevention of cell death, AtP5CDH was expressed at a basal level in all tissues analysed. The highest expression was found in flowers that are known to contain the highest Pro levels under normal conditions. External supply of Pro induced AtP5CDH expression, but much more slowly than Pro dehydrogenase (AtProDH) expression. Uncoupled induction of the AtProDH and AtP5CDH genes further supports the hypothesis that P5C levels have to be tightly controlled. These results indicate that, in addition to the well-studied functions of Pro, for example in osmoregulation, the Pro metabolism intermediate P5C also serves as a regulator of cellular stress responses.  相似文献   

3.
In transgenic Arabidopsis a patatin class I promoter from potato is regulated by sugars and proline (Pro), thus integrating signals derived from carbon and nitrogen metabolism. In both cases a signaling cascade involving protein phosphatases is involved in induction. Other endogenous genes are also regulated by both Pro and carbohydrates. Chalcone synthase (CHS) gene expression is induced by both, whereas the Pro biosynthetic Delta(1)-pyrroline-5-carboxylate synthetase (P5CS) is induced by high Suc concentrations but repressed by Pro, and Pro dehydrogenase (ProDH) is inversely regulated. The mutant rsr1-1, impaired in sugar dependent induction of the patatin promoter, is hypersensitive to low levels of external Pro and develops autofluorescence and necroses. Toxicity of Pro can be ameliorated by salt stress and exogenously supplied metabolizable carbohydrates. The rsr1-1 mutant shows a reduced response regarding sugar induction of CHS and P5CS expression. ProDH expression is de-repressed in the mutant but still down-regulated by sugar. Pro toxicity seems to be mediated by the degradation intermediate Delta(1)-pyrroline-5-carboxylate. Induction of the patatin promoter by carbohydrates and Pro, together with the Pro hypersensitivity of the mutant rsr1-1, demonstrate a new link between carbon/nitrogen and stress responses.  相似文献   

4.
Proline metabolism is implicated in plant responses to abiotic stresses, including the chilling stress. During proline catabolism, the two-step oxidation of proline is performed by the continuous actions of proline dehydrogenase (ProDH), which produces Δ1-pyrroline-5-carboxylate (P5C), and P5C dehydrogenase (P5CDH), which oxidizes P5C to glutamate. The Arabidopsis thaliana chilling mutants chs1 and chs2 are sensitive to chilling temperatures of 13–18°C. For a better understanding of Arabidopsis responses to chilling stress, 4-week-old wild-type (WT) and chs1 and chs2 lines, with three plants in each group, were subjected to chilling stress (13°C), cold stress (4°C), or remained under normal conditions (23°C); and several factors including the expression of ProDH2 and P5CDH genes, POX (peroxidase) and SOD (superoxide dismutase) activities, as well as MDA and proline contents were examined. Our results showed an increase in the proline content in all lines under chilling conditions. In addition, a greater expression of ProDH2 and a lower expression of P5CDH were observed, leading us to speculate a greater breakdown of proline into P5C and a consequent overproduction of ROS in the ETC cycle. The higher POX and SOD activities and a higher MDA content in chs mutants at 13°C are in line with this speculation. Finally, cold-treated plants (4°C) only showed an increase in proline levels.  相似文献   

5.

Background  

Proline (Pro) accumulation is a widespread response of prokaryotic and eukaryotic cells subjected to osmotic stress or dehydration. When the cells are released from stress, Pro is degraded to glutamate by Pro-dehydrogenase (ProDH) and Pyrroline-5-carboxylate dehydrogenase (P5CDH), which are both mitochondrial enzymes in eukaryotes. While P5CDH is a single copy gene in Arabidopsis, two ProDH genes have been identified in the genome. Until now, only ProDH1 (At3g30775) had been functionally characterised.  相似文献   

6.
Non-host disease resistance involves the production of hypersensitive response (HR), a programmed cell death (PCD) that occurs at the site of pathogen infection. Plant mitochondrial reactive oxygen species (ROS) production and red-ox changes play a major role in regulating such cell death. Proline catabolism reactions, especially pyrroline-5-carboxylate (P5C) accumulation, are known to produce ROS and contribute to cell death. Here we studied important genes related to proline synthesis and catabolism in the defence against host and non-host strains of Pseudomonas syringae in Nicotiana benthamiana and Arabidopsis. Our results show that ornithine delta-aminotransferase (δOAT) and proline dehydrogenases (ProDH1 and ProDH2) are involved in the defence against non-host pathogens. Silencing of these genes in N. benthamiana delayed occurrence of HR and favoured non-host pathogen growth. Arabidopsis mutants for these genes compromised non-host resistance and showed a decrease in non-host pathogen-induced ROS. Some of the genes involved in proline metabolism were also induced by a pathogen-carrying avirulence gene, indicating that proline metabolism is influenced during effector-triggered immunity (ETI). Our results demonstrate that δOAT and ProDH enzyme-mediated steps produce ROS in mitochondria and regulate non-host HR, thus contributing to non-host resistance in plants.  相似文献   

7.
Lv WT  Lin B  Zhang M  Hua XJ 《Plant physiology》2011,156(4):1921-1933
The effect of proline (Pro) accumulation on heat sensitivity was investigated using transgenic Arabidopsis (Arabidopsis thaliana) plants ectopically expressing the Δ(1)-pyrroline-5-carboxylate synthetase 1 gene (AtP5CS1) under the control of a heat shock protein 17.6II gene promoter. During heat stress, the heat-inducible expression of the AtP5CS1 transgene was capable of enhancing Pro biosynthesis. Twelve-day-old seedlings were first treated with heat at 37 °C for 24 h to induce Pro and then were stressed at 50 °C for 4 h. After recovery at 22 °C for 96 h, the growth of Pro-overproducing plants was significantly more inhibited than that of control plants that do not accumulate Pro, manifested by lower survival rate, higher ion leakage, higher reactive oxygen species (ROS) and malondialdehyde levels, and increased activity of the Pro/P5C cycle. The activities of antioxidant enzymes superoxide dismutase, guaiacol peroxidase, and catalase, but not those of glutathione reductase and ascorbate peroxidase, increased in all lines after heat treatment, but the increase was more significant in Pro-overproducing seedlings. Staining with MitoSox-Red, reported for being able to specifically detect superoxide formed in mitochondria, showed that Pro accumulation during heat stress resulted in elevated levels of ROS in mitochondria. Interestingly, exogenous abscisic acid (ABA) and ethylene were found to partially rescue the heat-sensitive phenotype of Pro-overproducing seedlings. Measurement of ethylene and ABA levels further confirmed that these two hormones are negatively affected in Pro-overproducing seedlings during heat stress. Our results indicated that Pro accumulation under heat stress decreases the thermotolerance, probably by increased ROS production via the Pro/P5C cycle and inhibition of ABA and ethylene biosynthesis.  相似文献   

8.
Proline (Pro) accumulation under water stress was measured in safflower (Carthamus tinctorius L.) drought tolerant cv. A1 and sensitive cv. Nira. Activities of pyrroline-5-carboxylate reductase (P5C reductase) and pyrroline-5-carboxylate synthetase (P5C synthetase), two enzymes involved in the Pro biosynthetic pathway were also estimated. Water stress resulted in a reduction in the leaf dry mass and chlorophyll content along with a gradual accumulation of Pro. RT-PCR results show higher expression of Δ1-pyrroline-5-carboxylate synthetase (p5cs) gene in correlation with up-regulated Pro accumulation in cv. A1. P5C reductase was found to be the Pro synthesis rate limiting whereas P5C synthetase did not show any specific response to the drought stress in both cultivars.  相似文献   

9.
The fluctuation of proline content, and protein and mRNA levels of delta1-pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH), both of which are involved in proline biosynthesis and degradation, in the shoots of Arabidopsis grown in light/dark cycles were demonstrated under salt-stressed and unstressed conditions. Proline content, as well as proteins and mRNAs of these enzymes, clearly oscillated in the light/dark cycles under the stressed and unstressed conditions. A reciprocal relationship between P5CS and ProDH was observed. Protein levels of P5CS and ProDH were well synchronized with their mRNA levels, although the fluctuation of protein levels was not as significant as that of their mRNA levels. Both mRNA and protein levels of the two enzymes as well as the proline content did not oscillate under the continuous light or the dark conditions. Thus, P5CS and ProDH gene expressions seemed to be involved in light irradiation. Moreover, relative water content (RWC) in the plants oscillated in the light/dark cycles. The fluctuations of proline content in shoot reversely responded to that of RWC. It is suggested that the expression of two genes responds sensitively to a subtle change of cellular water status, and accumulated proline keeps the osmotic balance between cells and the outer environment.  相似文献   

10.
11.
The effect of NaCl at sublethal concentration was observed on germinating seeds of salt-sensitive and -resistant rice cultivars with respect to the level of proline regulatory enzymes and the growth of seedlings on different days of early germination period. The two enzymes of proline biosynthesis and catabolism, Δ-pyrroline-5-carboxylate reductase and L-proline dehydrogenase, were taken into consideration to observe the effects of 100 mM NaCl on their activities in both rice cultivars. The activity of Δ-pyrroline-5-carboxylate reductase in salt-resistant cultivar was increased twice after 5 d in 100 mM NaCl. Simultaneously, the activity of L-proline dehydrogenase was decreased significantly. High activities of Δ-pyrroline-5-carboxylate reductase may be regarded as a biological marker for screening the sensitive and resistant cultivars of rice seed under NaCl-salinity.  相似文献   

12.
13.
In response to stress, plants accumulate Pro, requiring degradation after release from adverse conditions. Delta1-Pyrroline-5-carboxylate dehydrogenase (P5CDH), the second enzyme for Pro degradation, is encoded by a single gene expressed ubiquitously. To study the physiological function of P5CDH, T-DNA insertion mutants in AtP5CDH were isolated and characterized. Although Pro degradation was undetectable in p5cdh mutants, neither increased Pro levels nor an altered growth phenotype were observed under normal conditions. Thus AtP5CDH is essential for Pro degradation but not required for vegetative plant growth. External Pro application caused programmed cell death, with callose deposition, reactive oxygen species production, and DNA laddering, involving a salicylic acid signal transduction pathway. p5cdh mutants were hypersensitive toward Pro and other molecules producing P5C, such as Arg and Orn. Pro levels were the same in the wild type and mutants, but P5C was detectable only in p5cdh mutants, indicating that P5C accumulation may be the cause for Pro hypersensitivity. Accordingly, overexpression of AtP5CDH resulted in decreased sensitivity to externally supplied Pro. Thus, Pro and P5C/Glu semialdehyde may serve as a link between stress responses and cell death.  相似文献   

14.
Direct evidence is presented for a proline cycle using a cell-free experimental system which sequentially transfers 3H from [1-3H]glucose to NADP+ to Δ1-pyrroline-5-carboxylate and yields [3H]proline. The formation of [3H]proline depends on the presence of NADP, Δ1-pyrroline-5-carboxylate, and the enzymes glucose-6-phosphate dehydrogenase and Δ1-pyrroline-5-carboxylate reductase. The production of [3H]proline from unlabeled proline in the presence of mitochondria provides direct evidence for one complete turn of a proline cycle which transfers reducing equivalents produced by glucose oxidation in the pentose pathway into mitochondria. In this cycle, proline is oxidized to Δ1-pyrroline-5-carboxylate by mitochondrial proline oxidase. Δ1-pyrroline-5-carboxylate is released from mitochondria and is recycled back to proline by Δ1-pyrroline-5-carboxylate reductase with concomitant oxidation of NADPH. At the maximal rate observed, 60% of Δ1-pyrroline-5-carboxylate produced is recycled back to proline. This cycle provides a mechanism for transferring reducing equivalents from NADPH into mitochondria and is linked to glucose oxidation in the pentose pathway by NADPH turnover.  相似文献   

15.
Proline dehydrogenase/1-pyrroline-5-carboxylate dehydrogenase (Pro/P5C dehydrogenase), a bifunctional enzyme catalyzing the two consecutive reactions of the oxidation of proline to glutamic acid, was purified from Pseudomonas aeruginosa strain PAO1. Pro/P5C dehydrogenase oxidized L-proline in an FAD-dependent reaction to L-delta 1-pyrroline-5-carboxylic acid and converted this intermediate with NAD or NADP as cosubstrates to L-glutamic acid. The purification procedure involved DEAE-cellulose chromatography, affinity chromatography on Matrex gel red A and gel filtration on Sephadex G-200. It resulted, after 40-fold purification with 11% yield, in a homogeneous preparation (greater than 98% pure). The molecular weight of the single subunit was determined as 119,000. Gel filtration of purified Pro/P5C dehydrogenase yielded a molecular weight of 242,000 while polyacrylamide gel electrophoresis under native conditions led to the appearance of two catalytically active forms of the enzyme with molecular weights of 241,000 and 470,000. Manual Edman degradation revealed proline, alanine and aspartic acid as the N-terminal amino acid sequence. Pro/P5C dehydrogenase was highly specific for the L-forms of proline and delta 1-pyrroline-5-carboxylic acid. Its apparent Km values were 45 mM for L-proline, 0.03 mM for NAD and 0.17 mM for NADP. The saturation function for delta 1-pyrroline-5-carboxylic acid was non-hyperbolic.  相似文献   

16.
The role of the δ-ornithine amino transferase (OAT) pathway in proline synthesis is still controversial and was assessed in leaves of cashew plants subjected to salinity. The activities of enzymes and the concentrations of metabolites involved in proline synthesis were examined in parallel with the capacity of exogenous ornithine and glutamate to induce proline accumulation. Proline accumulation was best correlated with OAT activity, which increased 4-fold and was paralleled by NADH oxidation coupled to the activities of OAT and Δ1-pyrroline-5-carboxylate reductase (P5CR), demonstrating the potential of proline synthesis via OAT/P5C. Overall, the activities of GS, GOGAT and aminating GDH remained practically unchanged under salinity. The activity of P5CR did not respond to NaCl whereas Δ1-pyrroline-5-carboxylate dehydrogenase was sharply repressed by salinity. We suggest that if the export of P5C from the mitochondria to the cytosol is possible, its subsequent conversion to proline by P5CR may be important. In a time-course experiment, proline accumulation was associated with disturbances in amino acid metabolism as indicated by large increases in the concentrations of ammonia, free amino acids, glutamine, arginine and ornithine. Conversely, glutamate concentrations increased moderately and only within the first 24 h. Exogenous feeding of ornithine as a precursor was very effective in inducing proline accumulation in intact plants and leaf discs, in which proline concentrations were several times higher than glutamate-fed or salt-treated plants. Our data suggest that proline accumulation might be a consequence of salt-induced increase in N recycling, resulting in increased levels of ornithine and other metabolites involved with proline synthesis and OAT activity. Under these metabolic circumstances the OAT pathway might contribute significantly to proline accumulation in salt-stressed cashew leaves.  相似文献   

17.
Many organisms, including higher plants, accumulate free proline (Pro) in response to osmotic stress. Although various studies have focused on the ability of Pro as a compatible osmolyte involved in osmotolerance, its specific role throughout plant growth is still unclear. It has been reported that Pro is synthesized from Glu catalyzed by a key enzyme, delta 1-pyrroline-5-carboxylate synthetase (P5CS), in plants. To elucidate essential roles of Pro, we generated antisense transgenic Arabidopsis plants with a P5CS cDNA. Several transgenics accumulated Pro at a significantly lower level than wild-type plants, providing direct evidence for a key role of P5CS in Pro production in Arabidopsis. These antisense transgenics showed morphological alterations in leaves and a defect in elongation of inflorescences. Furthermore, transgenic leaves were hypersensitive to osmotic stress. Microscopic analysis of transgenic leaves, in which the mutated phenotype clearly occurred, showed morphological abnormalities of epidermal and parenchymatous cells and retardation of differentiation of vascular systems. These phenotypes were suppressed by exogenous L-Pro but not by D-Pro or other Pro analogues. In addition, Pro deficiency did not broadly affect all proteins but specifically affected structural proteins of cell walls in the antisense transgenic plants. These results indicate that Pro is not just an osmoregulator in stressed plants but has a unique function involved in osmotolerance as well as in morphogenesis as a major constituent of cell wall structural proteins in plants.  相似文献   

18.
We describe a radioisotopic assay for Δ1-pyrroline-5-carboxylate reductase. In this assay we use Δ1-pyrroline-5-carboxylate[U-14C] and isolate product l-[U-14C]proline by cation-exchange column chromatography.  相似文献   

19.
A proline shuttle for oxidation of extramitochondrial NADH was reconstituted from soluble and mitochondrial fractions of blowfly (Phormiaregina) flight muscle. The soluble fraction catalyzed reduction of Δ′-pyrroline-5-carboxylate to proline via the action of Δ′-pyrroline-5-carboxylate reductase (EC 1.5.1.2). The reaction required NADH as hydrogen donor, NAD (P) H being ineffective in this regard. Mitochondria catalyzed regeneration of Δ′-pyrroline-5-carboxylate from proline via action of proline oxidase. The capacity of the shuttle to operate under conditions of possible competition for Δ′-pyrroline-5-carboxylate between Δ′-pyrroline-5-carboxylate reductase and Δ′-pyrroline-5-carboxylate dehydrogenase (EC 1.5.1.12) was incestigated. Results of these investigations indicate that dehydrogenase activity does not significantly interfere with shuttle activity.  相似文献   

20.
Dye-linked l-proline dehydrogenase (ProDH) catalyzes the oxidation of l-proline to ∆1-pyrroline-5-carboxylate (P5C) in the presence of artificial electron acceptors. The enzyme is known to be widely distributed in bacteria and eukarya, together with nicotinamide adenine dinucleotide (phosphate)-dependent P5C dehydrogenase, and to function in the metabolism of l-proline to l-glutamate. In addition, over the course of the last decade, three other types of ProDH with molecular compositions completely different from previously known ones have been identified in hyperthermophilic archaea. The first is a heterotetrameric αβγδ-type ProDH, which exhibits both ProDH and reduced nicotinamide adenine dinucleotide dehydrogenase activity and includes two electron transfer proteins. The second is a heterooctameric α4β4-type ProDH, which uses flavin adenine dinucleotide, flavin mononucleotide, adenosine triphosphate, and Fe as cofactors and creates a new electron transfer pathway. The third is a recently identified homodimeric ProDH, which exhibits the greatest thermostability among these archaeal ProDHs. This minireview focuses on the functional and structural properties of these three types of archaeal ProDH and their distribution in archaea. In addition, we will describe the specific application of hyperthermostable ProDH for use in a biosensor and for DNA sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号