首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We describe the development and scale‐up of a novel two chain immunotoxin refolding process. This work provides a case study comparing a clinical manufacturing process and the commercial process developed to replace it. While the clinical process produced high quality material, it suffered from low yield and high yield variability. A systematic approach to process development and understanding led to a number of improvements that were implemented in the commercial process. These include a shorter inclusion body recovery process, limiting the formation of an undesired deamidated species and the implementation of fed batch dilution refolding for increased refold titers. The use of a combination of urea, arginine and DTT for capture column cleaning restored the binding capacity of the capture step column and resulted in consistent capture step yields compared to the clinical process. Scalability is shown with data from 250 L and 950 L scale refolding processes. Compared to the clinical process it replaces, the commercial process demonstrated a greater than fivefold improvement in volumetric productivity at the 950 L refolding scale. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1380–1389, 2014  相似文献   

2.
A new integrated continuous biomanufacturing platform for continuous production of antibodies at fixed cell volumes and cell concentrations for extended periods with immediate capture is presented. Upstream antibody production has reached technological maturity, however, the bottleneck for continuous biomanufacturing remains the efficient and cost-effective capture of therapeutic antibodies in an initial chromatography step. In this study, the first successful attempt at using one-column continuous chromatography (OCC) for the continuous capture of therapeutic antibodies produced through alternating tangential flow perfusion is presented. By performing upstream media optimizations, the upstream perfusion rate was reduced to one vessel volume per day (vv/d), increasing antibody titer and reducing the volume of perfusate. In addition, process improvements were performed to increase productivity by 80% over previously reported values. In addition, a real-time method for evaluating column performance to make column switching decisions was developed. This improved productivity coupled with the use of a single-column improved process monitoring and control in OCC compared to multi-column systems. This approach is the first report on using a single column for the implementation of an integrated continuous biomanufacturing platform and offers a cost-effective and flexible platform process for the manufacture of therapeutic proteins.  相似文献   

3.
Antibody microarrays have the potential to revolutionize protein expression profiling. The intensity of specific signal produced on a feature of such an array is related to the amount of analyte that is captured from the biological mixture by the immobilized antibody (the "capture agent"). This in turn is a function of the surface density and fractional activity of the capture agents. Here we investigate how these two factors are affected by the orientation of the capture agents on the surface. We compare randomly versus specifically oriented capture agents based on both full-sized antibodies and Fab' fragments. Each comparison was performed using three different antibodies and two types of streptavidin-coated monolayer surfaces. The specific orientation of capture agents consistently increases the analyte-binding capacity of the surfaces, with up to 10-fold improvements over surfaces with randomly oriented capture agents. Surface plasmon resonance revealed a dense monolayer of Fab' fragments that are on average 90% active when specifically oriented. Randomly attached Fab's could not be packed at such a high density and generally also had a lower specific activity. These results emphasize the importance of attaching proteins to surfaces such that their binding sites are oriented toward the solution phase.  相似文献   

4.
This work describes a strategy to optimize a downstream processing of a recombinant human growth hormone (rhGH) by incorporating a quality by design approach toward meeting higher quality specifications. The optimized process minimized the presence of impurities and degradation by-products during manufacturing by the establishment of in-process controls. Capillary zone electrophoresis, reverse phase, and size-exclusion chromatographies were used as analytical techniques to establish new critical process parameters for the solubilization, capture, and intermediate purification steps aiming to maintain rhGH quality by complying with pharmacopeial specifications. The results indicated that the implemented improvements in the process allowed the optimization of the specific recovery and purification of rhGH without compromising its quality. In addition, this optimization facilitated the stringent removal of the remaining impurities in further polishing stages, as demonstrated by the analysis of the obtained active pharmaceutical ingredient.  相似文献   

5.
Electromyography (EMG) is a technique for recording biomedical electrical signals obtained from the neuromuscular activities. These signals are used to monitor medical abnormalities and activation levels, and also to analyze the biomechanics of any animal movements. In this article, we provide a short review of EMG signal acquisition and processing techniques. The average efficiency of capture of EMG signals with current technologies is around 70%. Once the signal is captured, signal processing algorithms then determine the recognition accuracy, with which signals are decoded for their corresponding purpose (e.g., moving robotic arm, speech recognition, gait analysis). The recognition accuracy can go as high as 99.8%. The accuracy with which the EMG signal is decoded has already crossed 99%, and with improvements in deep learning technology, there is a large scope for improvement in the design hardware that can efficiently capture EMG signals.  相似文献   

6.
Laser-based tissue microdissection is an important tool for the molecular evaluation of histological sections. The technology has continued to advance since its initial commercialization in the 1990s, with improvements in many aspects of the process. More recent developments are tailored toward an automated, operator-independent mode that relies on antibodies as targeting probes, such as immuno–laser capture microdissection or expression microdissection (xMD). Central to the utility of expression-based dissection techniques is the effect of the staining process on the biomolecules in histological sections. To investigate this issue, the authors analyzed DNA, RNA, and protein in immunostained, microdissected samples. DNA was the most robust molecule, exhibiting no significant change in quality after immunostaining but a variable 50% to 75% decrease in the total yield. In contrast, RNA in frozen and ethanol-fixed, paraffin-embedded samples was susceptible to hydrolysis and digestion by endogenous RNases during the initial steps of staining. Proteins from immunostained tissues were successfully analyzed by one-dimensional electrophoresis and mass spectrometry but were less amenable to solution phase assays. Overall, the results suggest investigators can use immunoguided microdissection methods for important analytic techniques; however, continued improvements in staining protocols and molecular extraction methods are key to further advancing the capability of these methods.  相似文献   

7.
Using captured CO(2) to grow microalgae is limited by the high cost of CO(2) capture and transportation, as well as significant CO(2) loss during algae culture. Moreover, algae grow poorly at night, but CO(2) cannot be temporarily stored until sunrise. To address these challenges, we discuss a process where CO(2) is captured as bicarbonate and used as feedstock for algae culture, and the carbonate regenerated by the culture process is used as an absorbent to capture more CO(2). This process would significantly reduce carbon capture costs because it does not require additional energy for carbonate regeneration. Furthermore, not only would transport of the aqueous bicarbonate solution cost less than for that of compressed CO(2), but using bicarbonate would also provide a superior alternative for CO(2) delivery to an algae culture system.  相似文献   

8.
Bartolucci F  Pennoni F 《Biometrics》2007,63(2):568-578
We propose an extension of the latent class model for the analysis of capture-recapture data which allows us to take into account the effect of a capture on the behavior of a subject with respect to future captures. The approach is based on the assumption that the variable indexing the latent class of a subject follows a Markov chain with transition probabilities depending on the previous capture history. Several constraints are allowed on these transition probabilities and on the parameters of the conditional distribution of the capture configuration given the latent process. We also allow for the presence of discrete explanatory variables, which may affect the parameters of the latent process. To estimate the resulting models, we rely on the conditional maximum likelihood approach and for this aim we outline an EM algorithm. We also give some simple rules for point and interval estimation of the population size. The approach is illustrated by applying it to two data sets concerning small mammal populations.  相似文献   

9.
One of the known limitations for biosensor assays is the high limit of detection for target cells within complex samples (e.g., Escherichia coli at 10(4) to 10(5) CFU/mL) due to poor capture efficiencies. Currently, researchers can only estimate the cell capture efficiency necessary to produce a positive signal for any type of biosensor using either cumbersome techniques or regression modeling. To solve this problem, green fluorescent protein (GFP) transformed E. coli O157:H7 was used to develop a novel method for directly and easily measuring the cell capture efficiency of any given biosensor platform. For demonstration purposes, E. coli-GFP was assayed on both fiber optic and planar waveguide biosensor platforms. Cells were enumerated using an epifluorescent microscope and digital camera to determine the number of cells captured on the surfaces. Conversion algorithms were used with these digital images to determine the cell density of entire waveguide surface areas. For E. coli-GFP, the range of cell capture efficiency was between 0.4 and 1.2%. This indicates that although the developed model works for calculating cell capture, there is still need for significant improvements in capture methods themselves, to increase the capture efficiency and thereby lower detection limits. The use of GFP-transformed target cells and cell capture efficiency calculations can facilitate the development and optimization processes by allowing direct enumeration of new biosensor design configurations and sample processing strategies.  相似文献   

10.
Determination of dynamic binding capacity (DBC) for capture purification chromatographic step is usually the first experiment to be performed during downstream process development of biopharmaceuticals. In this work, we investigated the application of inline variable pathlength technology using FlowVPE for rapid determination of DBC on affinity resins for protein capture and proved its comparability with offline titer methods. This work also demonstrated that variable pathlength technology for DBC determination can be successfully applied to different classes of monoclonal antibodies and fusion proteins. This enabled rapid screening of affinity resins and optimization of the capture chromatography step. Hence, use of inline variable pathlength technology eliminated the dependency on offline titer data, traditionally used for DBC determination and accelerated overall process development timelines with less cost.  相似文献   

11.
Due to the increasing economic and social relevance of biotherapeutics, their production processes are continually being reconsidered and reoptimized in an effort to secure higher product concentrations and qualities. Monitoring the productivity of cultured cells is therefore a critically important part of the cultivation process. Traditionally, this is achieved by determining the overall product titer by high performance liquid chromatography (HPLC), and then calculating the specific cell productivity based on this titer and an associated viable cell density. Unfortunately, this process is typically time‐consuming and laborious. In this study, the productivity of Chinese Hamster Ovary (CHO) cells expressing a monoclonal antibody was analyzed over the course of the cultivation process. In addition to calculating the specific cell productivity based on the traditional product titer determined by HPLC analysis, culture productivity of single cells was also analyzed via flow cytometry using a cold capture assay. The cold capture assay is a cell surface labelling technique described by Brezinsky et al., which allows for the visualization of a product on the surface of the producing cell. The cell productivity results obtained via HPLC and the results of cold capture assay remained in great accordance over the whole cultivation process. Accordingly, our study demonstrates that the cold capture assay offers an interesting, comparatively time‐effective, and potentially cheaper alternative for monitoring the productivity of a cell culture.  相似文献   

12.
The soybean cyst nematode (Heterodera glycines) is an obligate parasite of soybean (Glycine max). It is the most destructive pathogen of G. max, accounting for approximately 0.46–0.82 billion dollars in crop losses, annually, in the U.S. Part of the infection process involves H. glycines establishing feeding sites (syncytia) that it derives its nourishment from throughout its lifecycle. Microscopic methods (i.e., laser capture microdissection [LCM]) that faithfully dissect out those feeding sites are important improvements to the study of this significant plant pathogen. Our isolation of developing feeding sites during an incompatible or a compatible reaction is providing new ways by which this important plant-pathogen interaction can be studied. We have used these methods to create cDNA libraries, clone genes and perform microarray analyses. Importantly, it is providing insight not only into how the root is responding at the organ level to H. glycines, but also how the syncytium is responding during its maturation into a functional feeding site.Key words: soybean, Glycine max, soybean cyst nematode, SCN, Heterodera glycines, microarray, gene expression, plant pathogen, parasite, laser capture microdissection  相似文献   

13.
The evaluation, selection, or justification of business process improvements, or business process reengineering efforts, is similar to many strategic initiatives and their justification methodologies. This similarity arises from the fact that there are multiple factors that need to be considered, many of which have long-term and broad implications for an organization. There are many intangible measures and qualitative concerns when evaluating business process improvements. These improvements necessarily have to link to the strategic objectives of the organization. The proposed methodological framework will involve the synthesis of the analytical network process and data envelopment analysis. These two techniques, when used together, can provide subjective and objective evaluations for managerial decision makers. An illustrative example provides some insights into the application of this methodology. Additional issues and research questions are also identified.  相似文献   

14.
Understanding the impact distribution of particles entering the human respiratory system is of primary importance as it concerns not only atmospheric pollutants or dusts of various kinds but also the efficiency of aerosol therapy and drug delivery. To model this process, current approaches consist of increasingly complex computations of the aerodynamics and particle capture phenomena, performed in geometries trying to mimic lungs in a more and more realistic manner for as many airway generations as possible. Their capture results from the complex interplay between the details of the aerodynamic streamlines and the particle drag mechanics in the resulting flow. In contrast, the present work proposes a major simplification valid for most airway generations at quiet breathing. Within this context, focusing on particle escape rather than capture reveals a simpler structure in the entire process. When gravity can be neglected, we show by computing the escape rates in various model geometries that, although still complicated, the escape process can be depicted as a multiplicative escape cascade in which each elementary step is associated with a single bifurcation. As a net result, understanding of the particle capture may not require computing particle deposition in the entire lung structure but can be abbreviated in some regions using our simpler approach of successive computations in single realistic bifurcations. Introducing gravity back into our model, we show that this multiplicative model can still be successfully applied on up to nine generations, depending on particle type and breathing conditions.  相似文献   

15.
In this article, I explore the history, logic, and practice of capture among the Cofán people of Amazonian Ecuador. Rather than acting as the subjects of capture, Cofán people have primarily been its objects. Centuries of pre‐Conquest, colonial, and postcolonial violence have exposed Cofán communities to repeated seizures by indigenous and non‐indigenous aggressors. Although capture by enemy others is a feared prospect that typically brings disaster, it also serves as the Cofán nation's central means of acquiring violent powers, which are essential to its defence. By investigating the uncertainties of capture as a productive process, I question dominant representations of native Amazonians as wilful participants in a cosmos of generalized predation, and I issue a plea for openness when considering the diversity of the region's peoples.  相似文献   

16.
Peptide reagents can serve as alternatives or replacements to antibodies in sensing or diagnostic applications. The passive adsorption of peptides onto polystyrene surfaces can limit the target binding capability, especially for short, positively charged, or hydrophobic sequences. In this report, we show that fusing a peptide with a previously characterized 12-amino acid polystyrene binding sequence (PS-tag) improves overall peptide solubility and enzyme-linked immunosorbent assay (ELISA) results using the peptide as a capture agent. Specific improvements for protective antigen (PA; Bacillus anthracis) protein binding peptides selected from bacterial surface display were compared with native or biotinylated peptides. The PS-tag was added to either peptide terminus, using a (Gly)(4) spacer, and comparable binding affinities were obtained. Fusion with the PS-tag did not have any negative impact on peptide secondary structure as measured by circular dichroism. The addition of the PS-tag provides a convenient method to utilize peptide reagents from peptide display libraries as capture agents in an ELISA format without the need for a biotin tag or concerns about passive adsorption of critical residues for target capture.  相似文献   

17.
The ability to capture the state of a process and later recover that state in the form of an equivalent running process is the basis for a number of important features in parallel and distributed systems. Adaptive load sharing and fault tolerance are well-known examples. Traditional state capture mechanisms have employed an external agent (such as the operating system kernel) to examine and capture process state. However, the increasing prevalence of heterogeneous cluster and “metacomputing” systems as high-performance computing platforms has prompted investigation of process-internal state capture mechanisms. Perhaps the greatest advantage of the process-internal approach is the ability to support cross-platform state capture and recovery, an important feature in heterogeneous environments. Among the perceived disadvantages of existing process-internal mechanisms are poor performance in multiple respects, and difficulty of use in terms of programmer effort. In this paper we describe a new process-internal state capture and recovery mechanism: Process Introspection. Experiences with this system indicate that the perceived disadvantages associated with process-internal mechanisms can be largely overcome, making this approach to state capture an appropriate one for cluster and metacomputing environments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The enzyme-linked immunosorbent assay (ELISA) has long been the primary tool for detection of analytes of interest in biological samples for both life science research and clinical diagnostics. However, ELISA has limitations. It is typically performed in a 96-well microplate, and the wells are coated with capture antibody, requiring a relatively large amount of sample to capture an antigen of interest . The large surface area of the wells and the hydrophobic binding of capture antibody can also lead to non-specific binding and increased background. Additionally, most ELISAs rely upon enzyme-mediated amplification of signal in order to achieve reasonable sensitivity. Such amplification is not always linear and can thus skew results.In the past 15 years, a new technology has emerged that offers the benefits of the ELISA, but also enables higher throughput, increased flexibility, reduced sample volume, and lower cost, with a similar workflow 1, 2. Luminex xMAP Technology is a microsphere (bead) array platform enabling both monoplex and multiplex assays that can be applied to both protein and nucleic acid applications 3-5. The beads have the capture antibody covalently immobilized on a smaller surface area, requiring less capture antibody and smaller sample volumes, compared to ELISA, and non-specific binding is significantly reduced. Smaller sample volumes are important when working with limiting samples such as cerebrospinal fluid, synovial fluid, etc. 6. Multiplexing the assay further reduces sample volume requirements, enabling multiple results from a single sample.Recent improvements by Luminex include: the new MAGPIX system, a smaller, less expensive, easier-to-use analyzer; Low-Concentration Magnetic MagPlex Microspheres which eliminate the need for expensive filter plates and come in a working concentration better suited for assay development and low-throughput applications; and the xMAP Antibody Coupling (AbC) Kit, which includes a protocol, reagents, and consumables necessary for coupling beads to the capture antibody of interest. (See Materials section for a detailed list of kit contents.)In this experiment, we convert a pre-optimized ELISA assay for TNF-alpha cytokine to the xMAP platform and compare the performance of the two methods 7-11. TNF-alpha is a biomarker used in the measurement of inflammatory responses in patients with autoimmune disorders.We begin by coupling four candidate capture antibodies to four different microsphere sets or regions. When mixed together, these four sets allow for the simultaneous testing of all four candidates with four separate detection antibodies to determine the best antibody pair, saving reagents, sample and time. Two xMAP assays are then constructed with the two most optimal antibody pairs and their performance is compared to that of the original ELISA assay in regards to signal strength, dynamic range, and sensitivity.  相似文献   

19.
Transgenic mouse models are valuable resources for analyzing functions of genes involved in human diseases. Mouse models provide critical insights into biological processes, including in vivo visualization of vasculature critical to our understanding of the immune system. Generating transgenic mice requires the capture and modification of large-insert DNAs representing genes of interest. We have developed a methodology using a yeast-bacterial shuttle vector, pClasper, that enables the capture and modification of bacterial artificial chromosomes (BAC)-sized DNA inserts. Numerous improvements and technical advances in the original pClasper vector have allowed greater flexibility and utility in this system. Examples of such pClasper mediated gene modifications include: Claspette-mediated capture of large-insert genomic fragments from BACs-human polycystic kidney disease-1 (PKD1); modification of pClasperA clones by the RareGap method-PKD1 mutations; Claspette-mediated modification of pClasper clones-mouse albumin-1 gene; and, of most relevance to our interest in lymph node vasculature-Claspimer-mediated modification of pClasper clones-high endothelial venule and lymphatic vessel genes. Mice that have been generated with these methods include mice with fluorescent high endothelial venules.  相似文献   

20.
In molecular testing using PCR, the target DNA is amplified via PCR and the sequence of interest is investigated via hybridization with short oligonucleotide capture probes that are either in a solution or immobilized on solid supports such as beads or glass slides. In this report, we report the discovery of assembly of DNA complex(es) between a capture probe and multiple strands of the PCR product. The DNA complex most likely has branched structure. The assembly of branched DNA was facilitated by the product of asymmetric PCR. The amount of branched DNA assembled was increased five fold when the asymmetric PCR product was denatured and hybridized with a capture probe all in the same PCR reaction mixture. The major branched DNA species appeared to contain three reverse strands (the strand complementary to the capture probe) and two forward strands. The DNA was sensitive to S1 nuclease suggesting that it had single-stranded gaps. Branched DNA also appeared to be assembled with the capture probes immobilized on the surface of solid support when the product of asymmetric PCR was hybridized. Assembly of the branched DNA was also increased when hybridization was performed in complete PCR reaction mixture suggesting the requirement of DNA synthesis. Integration of asymmetric PCR, heat denaturation and hybridization in the same PCR reaction mixture with the capture probes immobilized on the surface of solid support achieved dramatic increase in the signal and sensitivity of detection of DNA. Such a system should be advantageously applied for development of automated process for detection of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号