首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The RNA genome of the human immunodeficiency virus type-1 (HIV-1) contains a approximately 120 nucleotide Psi-packaging signal that is recognized by the nucleocapsid (NC) domain of the Gag polyprotein during virus assembly. The Psi-site contains four stem-loops (SL1-SL4) that possess overlapping and possibly redundant functions. The present studies demonstrate that the 19 residue SL2 stem-loop binds NC with affinity (K(d)=110(+/-50) nM) similar to that observed for NC binding to SL3 (K(d)=170(+/-65) nM) and tighter than expected on the basis of earlier work, suggesting that NC-SL2 interactions probably play a direct role in the specific recognition and packaging of the full-length, unspliced genome. The structure of the NC-SL2 complex was determined by heteronuclear NMR methods using (15)N,(13)C-isotopically labeled NC protein and SL2 RNA. The N and C-terminal "zinc knuckles" (Cys-X(2)-Cys-X(4)-His-X(4)-Cys; X=variable amino acid) of HIV-1 NC bind to exposed guanosine bases G9 and G11, respectively, of the G8-G9-U10-G11 tetraloop, and residues Lys3-Lys11 of the N-terminal tail forms a 3(10) helix that packs against the proximal zinc knuckle and interacts with the RNA stem. These structural features are similar to those observed previously in the NMR structure of NC bound to SL3. Other features of the complex are substantially different. In particular, the N-terminal zinc knuckle interacts with an A-U-A base triple platform in the minor groove of the SL2 RNA stem, but binds to the major groove of SL3. In addition, the relative orientations of the N and C-terminal zinc knuckles differ in the NC-SL2 and NC-SL3 complexes, and the side-chain of Phe6 makes minor groove hydrophobic contacts with G11 in the NC-SL2 complex but does not interact with RNA in the NC-SL3 complex. Finally, the N-terminal helix of NC interacts with the phosphodiester backbone of the SL2 RNA stem mainly via electrostatic interactions, but does not bind in the major groove or make specific H-bonding contacts as observed in the NC-SL3 structure. These findings demonstrate that NC binds in an adaptive manner to SL2 and SL3 via different subsets of inter and intra-molecular interactions, and support a genome recognition/packaging mechanism that involves interactions of two or more NC domains of assembling HIV-1 Gag molecules with multiple Psi-site stem-loop packaging elements during the early stages of retrovirus assembly.  相似文献   

12.
13.
Due to its highly conserved zinc fingers and its nucleic acid chaperone properties which are critical for HIV-1 replication, the nucleocapsid protein (NC) constitutes a major target in AIDS therapy. Different families of molecules targeting NC zinc fingers and/or inhibiting the binding of NC with its target nucleic acids have been developed. However, their limited specificity and their cellular toxicity prompted us to develop a screening assay to target molecules able to inhibit NC chaperone properties, and more specifically the initial NC-promoted destabilization of the nucleic acid secondary structure. Since this destabilization is critically dependent on the properly folded fingers, the developed assay is thought to be highly specific. The assay was based on the use of cTAR DNA, a stem–loop sequence complementary to the transactivation response element, doubly labelled at its 5′ and 3′ ends by a rhodamine 6G fluorophore and a fluorescence quencher, respectively. Addition of NC(12-55), a peptide corresponding to the zinc finger domain of NC, to this doubly-labelled cTAR, led to a partial melting of the cTAR stem, which increases the distance between the two labels and thus, restores the rhodamine 6G fluorescence. Thus, positive hits were detected through the decrease of rhodamine 6G fluorescence. An “in-house” chemical library of 4800 molecules was screened and five compounds with IC50 values in the micromolar range have been selected. The hits were shown by mass spectrometry and fluorescence anisotropy titration to prevent binding of NC(12-55) to cTAR through direct interaction with the NC folded fingers, but without promoting zinc ejection. These non-zinc ejecting NC binders are a new series of anti-NC molecules that could be used to rationally design molecules with potential anti-viral activities.  相似文献   

14.
15.
16.
17.
18.
Retroviral nucleocapsid (NC) protein is an integral part of the virion nucleocapsid where it is in tight association with genomic RNA and the tRNA primer. NC protein is necessary for the dimerization and encapsidation of genomic RNA, the annealing of the tRNA primer to the primer binding site (PBS) and the initial strand transfer event. Due to the general nature of NC protein-promoted annealing, its use to improve nucleic acid interactions in various reactions can be envisioned. Parameters affecting NC-promoted nucleic acid annealing of NCp7 from HIV-1 have been analyzed. The promotion of RNA:RNA and RNA:DNA annealing by NCp7 is more sensitive to the concentration of MgCl2 than the promotion of DNA:DNA hybridization. Stimulation of complex formation for all three complexes was efficient at 0-90 mM NaCl, between 23 and 55 degrees C and at pH values between 6.5 and 9.5, inclusive. Parameters affecting NCp7-promoted hybridization of tRNA(Lys,3) to the PBS, which appears to be specific for NC protein, will be discussed. Results implicate the basic regions of NCp7, but not the zinc fingers, in promoting the annealing of complementary nucleic acid sequences. Finally, NCp7 strand transfer activity aids the formation of the most stable nucleic acid complex.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号